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• Given: pairwise distinct  
            and . 

• Find:  satisfying: 
 

 

 

(i1, …, it+1) ∈ 𝔽 t+1
p

(si1, …, sit+1) ∈ 𝔽 t+1
p

f(x) = + ⋅ x + … ⋅ xt

f(i1) = + ⋅ i1 + … ⋅ it
1 = si1

f(i2) = + ⋅ i2 + … ⋅ it
2 = si2

⋯
f(it+1) = + ⋅ it+1 + … ⋅ it

t+1 = sit+1

Interpolation: the Problem

s2 s3 s6m

(Example for t=2)

m ata1

This is a linear system with  equations and 
 variables, so…

t + 1
t + 1

m ata1

m ata1

m ata1



• Given: pairwise distinct  
            and . 

• Find:  satisfying: 
 

(i1, …, it+1) ∈ 𝔽 t+1
p

(si1, …, sit+1) ∈ 𝔽 t+1
p

f(x) = + ⋅ x + … ⋅ xt

1 i1 ⋯ it
1

⋮ ⋮ ⋱ ⋮
1 it+1 ⋯ it

t+1
⋮ =

s1
s2
⋮

st+1

Interpolation: the Problem

s2 s3 s6m

(Example for t=2)

This is called a 
Vandermonde Matrix

It has determinant , therefore…∏
0≤ j<k≤t+1

(ik − ij) ≠ 0

m

m

ata1

a1

at



• Given: pairwise distinct  
            and . 

• Find:  satisfying: 
 

(i1, …, it+1) ∈ 𝔽 t+1
p
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⋮ =
1 i1 ⋯ it
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1 it+1 ⋯ it

t+1

−1 s1
s2
⋮

st+1

Interpolation: the Problem

s2 s3 s6m

(Example for t=2)

m ata1

m
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… it is always invertible.

Let’s turn this into an interpolation algorithm for 
directly recovering any point on the polynomial!



(Chalkboard Proof)



Def 1 (Lagrange Basis): Given a set of  distinct values , the  
Lagrange bases of degree  are defined  as:

t + 1 x1, …, xt+1 ∈ 𝔽 t + 1
≤ t ∀i ∈ [t + 1]

ℓi(x) = ∏
j∈[t+1]∖{i}

x − xj

xi − xj

Def 2 (Lagrange Polynomial): Given a set of  points , with 
distinct x-coordinates, the degree  Lagrange polynomial is:

t + 1 (x1, y1), …, (xt+1, yt+1) ∈ 𝔽2

≤ t
L(x) = ∑

i∈[t+1]

yi ⋅ ℓi(x)



•  depend only upon , so 
any group of parties that wish to reconstruct can 
precompute the appropriate Lagrange bases. 
Then reconstruct is simply a linear combination. 

• To recover  the parties only need to precompute 
. 

• If  is large, we can choose the indexes of the 
parties to make reconstruction more efficient! 
(e.g. so that we multiply by powers of 2)

ℓ1(x), …, ℓt+1(x) i1, …, it+1

m
ℓ1(0), …, ℓt+1(0)

p

Interpolating Shamir Shares Efficiently

s2 s3 s6m

(Example for t=2)



Memory-Efficient Secret Sharing

s2 s3 s6m

(Example for t=2, r=4)

• Question: So far we encoded a single secret, 
achieved privacy against  corrupt parties, 
and required  parties to reconstruct. What if 
we require  parties to reconstruct (i.e. use a 
polynomial of degree  instead of )? 
Answer: We can encode two secrets! 
In general, for  corruptions and  reconstruction 
parties, you can encode  secrets. 
This is called packed secret sharing. 
Checking that you still get correctness and 
privacy would be a good exercise for you! 
…but I’m not assigning it for homework.

t
t + 1

t + 2
t + 1 t

t r
r − t

m′￼ s5



Linear Secret Sharing Schemes
Definition 3: A secret sharing scheme is linear if and only if: 
1. The message space is a group. That is, for some group  and every valid , . 
2. The randomness consumed by the  algorithm can be cast a vector  of elements of . 
3. Each share  is a fixed, publicly known linear combination of  and . 

Question: is Shamir Secret Sharing linear? 
Answer: Yes! This means we can write the  algorithm as a matrix multiplication.

𝔾 m m ∈ 𝔾
𝖲𝗁𝖺𝗋𝖾 ⃗a 𝔾

si m ⃗a

𝖲𝗁𝖺𝗋𝖾

s1
s2
⋮
sn

:=
1 i1 ⋯ in−1

1
⋮ ⋮ ⋱ ⋮
1 in ⋯ in−1

n

⋮

0
⋮
0

m
a1

at

We don’t strictly need a field here: 
for  and ,  can be defined as 
a scalar product. That is, 

i ∈ ℕ a ∈ 𝔾 i ⋅ a
i ⋅ a = a + … + a

i times

However, if we aren’t operating over a 
field, we might not be able to reconstruct!



Linear Secret Sharing Schemes
Now Suppose we add together sharings of two different values. What happens?

s1
s2
⋮
sn

:=
1 i1 ⋯ in−1

1
⋮ ⋮ ⋱ ⋮
1 in ⋯ in−1

n

⋮

0
⋮
0

m
a1

at

s′￼1

s′￼2
⋮
s′￼n

:=
1 i1 ⋯ in−1

1
⋮ ⋮ ⋱ ⋮
1 in ⋯ in−1

n

⋮

0
⋮
0

m′￼

a′￼1

a′￼t

s1
s2
⋮
sn

+

s′￼1

s′￼2
⋮
s′￼n

=
1 i1 ⋯ in−1

1
⋮ ⋮ ⋱ ⋮
1 in ⋯ in−1

n

⋮

0
⋮
0

+
1 i1 ⋯ in−1

1
⋮ ⋮ ⋱ ⋮
1 in ⋯ in−1

n

⋮

0
⋮
0

m
a1

at

m′￼

a′￼1

a′￼t =
1 i1 ⋯ in−1

1
⋮ ⋮ ⋱ ⋮
1 in ⋯ in−1

n

⋮

0
⋮
0

m + m′￼

a1 + a′￼1

at + a′￼t



Linear Secret Sharing Schemes
Now Suppose we add together sharings of two different values. What happens?

s1
s2
⋮
sn

+

s′￼1

s′￼2
⋮
s′￼n

=
1 i1 ⋯ in−1

1
⋮ ⋮ ⋱ ⋮
1 in ⋯ in−1

n

⋮

0
⋮
0

+
1 i1 ⋯ in−1

1
⋮ ⋮ ⋱ ⋮
1 in ⋯ in−1

n

⋮

0
⋮
0

m
a1

at

m′￼

a′￼1

a′￼t =
1 i1 ⋯ in−1

1
⋮ ⋮ ⋱ ⋮
1 in ⋯ in−1

n

⋮

0
⋮
0

m + m′￼

a1 + a′￼1

at + a′￼t

We have a secret sharing of the sum of the values.

Observation: if  and  are uniformly distributed in , then  is too.a a′￼ 𝔽 a + a′￼

Thus if we have  and  then  is uniform in .f ← 𝒫p,t,m f′￼ ← 𝒫p,t,m′￼
g = f + f′￼ 𝒫p,t,(m+m′￼)

It fulfills our privacy definition! Notice that there is a correlation, between,  though…g, f, f′￼



Two Dealers Distribute a Sum…

Input: x1 ∈ 𝔽p Input: x2 ∈ 𝔽p
Sample:  
   Share:

f1 ← 𝒫p,t,x1
∀i ∈ [n], yi = f(i)

Sample:  
   Share:

f2 ∈ 𝒫p,t,x2
∀i ∈ [n], zi = f(i)

y1
z1

y2
z2

y3
z3

y4
z4

y5
z5

x1

x2



Two Dealers Distribute a Sum…

Input: x1 ∈ 𝔽p Input: x2 ∈ 𝔽p
Sample:  
   Share:

f1 ← 𝒫p,t,x1
∀i ∈ [n], yi = f(i)

Sample:  
   Share:

f2 ∈ 𝒫p,t,x2
∀i ∈ [n], zi = f(i)

y1
z1

y2
z2

y3
z3

y4
z4

y5
z5

x1

x2

w1 = y1 + z1 w2 = y2 + z2 w3 = y3 + z3 w4 = y4 + z4 w5 = y5 + z5

The parties can compute a sharing of the sum without interacting! 
(no interaction  they cannot possibly learn anything new)⟹

x1 + x2



Two Dealers Distribute a Sum…
Input: x1 ∈ 𝔽p Input: x2 ∈ 𝔽p

Sample:  
   Share:

f1 ← 𝒫p,t,x1
∀i ∈ [n], yi = f(i)

Sample:  
   Share:

f2 ∈ 𝒫p,t,x2
∀i ∈ [n], zi = f(i)

y1
z1

y2
z2

y3
z3

y4
z4

y5
z5

x1

x2

w1 = y1 + z1 w2 = y2 + z2 w3 = y3 + z3 w4 = y4 + z4 w5 = y5 + z5

x1 + x2

Because they have a degree-  Shamir sharing of , they can 
perform additional operations on it! e.g. scalar multiplication by .

t x1 + x2
c

c c c c c

v1 = c ⋅ w1 v3 = c ⋅ w3v2 = c ⋅ w2 v5 = c ⋅ w5v4 = c ⋅ w4

(x1 + x2) ⋅ c



Two Dealers Distribute a Sum…

y1
z1

y2
z2

y3
z3

y4
z4

y5
z5

x1

x2

w1 = y1 + z1 w2 = y2 + z2 w3 = y3 + z3 w4 = y4 + z4 w5 = y5 + z5

x1 + x2

c c c c c

v1 = c ⋅ w1 v3 = c ⋅ w3v2 = c ⋅ w2 v5 = c ⋅ w5v4 = c ⋅ w4

(x1 + x2) ⋅ c

(Example for t=2)

Since  correspond to a uniform 
member of ,        learns nothing 
about ,  beyond .

v1, …, v5
𝒫p,t,(x1+x2)⋅c

x1 x2 (x1 + x2) ⋅ c

Notice that anyone who receives  
shares shares can reconstruct .

t + 1
(x1 + x2) ⋅ c

…even if       also knows  shares of , . Why?t x1 x2



x1

x6

r ← ℤM

x2

x3

x4

x5

m 1
= x 1

+ r mod M

m2 = x2 + m1 mod M

m
3 = x3 + m

2 mod M m 4
= x 4

+ m 3
mod M

m5 = x5 + m4 mod M

m
6 = x6 + m

5 mod M

y = m7 = m6 − r mod M

B

Example: -Party Sumn
• In previous lectures we saw this protocol. 

We proved it was secure against one 
semi-honest corruption and demonstrated 
that it was insecure against two. 

• Is there a way to achieve security against 
more corruptions? How many? 

• How many rounds of interaction do we need?



Arithmetic Circuits: 
How to Model Multi-Step Computations



• In 1938 proved that boolean logic could be used to analyze digital computers. 

• Since then the overwhelming majority of computer hardware has been digital, and 
the overwhelming majority of theory has concerned boolean circuits (or other 
models of equivalent expressive power, such as Turing machines). 

• There are  truth tables for a 2-ary boolean logic gate. Of these, 2 have constant 
output (0,1) and 4 depend upon only one input wire (e.g. NOT). The other 10 are: 
AND,         OR,         XOR,      NAND,   NOR,      XNOR,   …

24

Quiz: what gates have 
these truth tables?

Boolean Circuits



Boolean Circuits
• In 1938 proved that boolean logic could be used to analyze digital computers. 

• Since then the overwhelming majority of computer hardware has been digital, and 
the overwhelming majority of theory has concerned boolean circuits (or other 
models of equivalent expressive power, such as Turing machines). 

• There are  truth tables for a 2-ary boolean logic gate. Of these, 2 have constant 
output (0,1) and 4 depend upon only one input wire (e.g. NOT). The other 10 are: 
AND,         OR,         XOR,      NAND,   NOR,      XNOR,   IMPLY , NIMPLY  

• We use gates to build circuits. A circuit is a directed acyclic graph. The edges are 
wires and the nodes are gates, inputs, or outputs. Usually we allow fan-out: the output 
of a gate can connect to many inputs. Evaluation happens in topological order.

24

(×2) (×2)

Note: Sorry hardware people - latches are forbidden here because they are cyclic.



Boolean Circuits
Every boolean function  can be represented as a boolean circuit. Let 

 be the  input wires and  be the  output wires. 

1. For every  write down the truth table with respect to . There are  rows. 
Each row  maps some assignment of  to some assignment of . 

2. If row  has , then let , , and 
. If row  has , then let . 

3. Now you can compute . This is Disjunctive Normal Form.

f : {0,1}n → {0,1}m

x1, …, xn n z1, …, zm m

j ∈ [m] zj 2n

k xk
1, …, xk

n zk
j

k zk
j = 1 Sk

j = {i ∈ [n] : xk
i = 1} Tk

j = {i ∈ [n] : xk
i = 0}

Ck
j (x1, …, xn) = ⋀

i∈Sk
j

xi ⋀
i∈Tk

j

¬xi k zk
j = 0 Ck

j (x1, …, xn) = 0

zj = ⋁
k∈[2n]

Ck
j (x1, …, xn)

Note: The size of the circuit we define this way might be exponential!



Boolean Circuits
Every boolean function  can be represented as a boolean circuit. Let 

 be the  input wires and  be the  output wires. 

1. For every  write down the truth table with respect to . There are  rows. 
Each row  maps some assignment of  to some assignment of . 

2. If row  has , then let , , and 
. If row  has , then let . 

3. Now you can compute . This is Disjunctive Normal Form. 

Any set of boolean gates that can be used to express all functions is called complete. 
Above we used  but other combinations work, such as .

f : {0,1}n → {0,1}m

x1, …, xn n z1, …, zm m

j ∈ [m] zj 2n

k xk
1, …, xk

n zk
j

k zk
j = 1 Sk

j = {i ∈ [n] : xk
i = 1} Tk

j = {i ∈ [n] : xk
i = 0}

Ck
j (x1, …, xn) = ⋀

i∈Sk
j

xi ⋀
i∈Tk

j

¬xi k zk
j = 0 Ck

j (x1, …, xn) = 0

zj = ⋁
k∈[2n]

Ck
j (x1, …, xn)

( ∧ , ∨ , ¬ ) ( ∧ , ⊕ , 1)



(Small Quiz: What is this Circuit?)

x1

x2

x3

z3

Answer: 2-of-3 threshold.

AND

AND

AND

OR

OR



Arithmetic Circuits
• In this class, we will think about arithmetic circuits over . Each wire contains a 

value from . Each gate is a 2-ary function . There are  possible gates! 

• In order represent any -ary function  as an arithmetic circuit, we need a 
complete set of gates for . Any idea which ones? 

• Since  are the fundamental operations on , it had better be those! We also 
need a constant (for algebraists: not every possible input includes a generator). 

Claim: any function  can be expressed using . Can you see how? 

Pf Sketch: To compute the th output , write the truth table and find the 
multivariate Lagrange polynomial that passes through the points defined by the rows of 
the truth table. This Lagrange polynomial computes  using  and constants.

𝔽p
𝔽p 𝔽2

p → 𝔽p pp2

n f : 𝔽n
p → 𝔽m

p
𝔽p

( ⋅ , + ) 𝔽p

f : 𝔽n
p → 𝔽m

p ( ⋅ , + ,1)

j zj ∈ 𝔽p

f ( ⋅ , + )

Note: The degree of the polynomial we define this way might be exponential!



Generalization Note
Note that boolean circuits correspond to arithmetic circuits over  with . 

 is equivalent to  in , and  is equivalent to .
𝔽p p = 2

∧ ⋅ 𝔽2 ⊕ +



Putting the Pieces Together



A First Look at the BGW Protocol
• First described by Ben-Or, Goldwasser, Widgerson, 1988 

• Securely computes arithmetic circuits over a finite field 

• Achieves perfect security… 

• …against an unbounded semi-honest  statically corrupting up to  parties. 

• …against an unbounded malicious  statically corrupting up to  parties. 

• We will see later that this is the best you can do if you want perfect security! 

• Serves as the basis for more advanced protocols that handle adaptive corruption. 

• Number of rounds grows with multiplicative depth of the function computed.

𝒜 t < n/2

𝒜 t < n/3



A First Look at the BGW Protocol
Let’s Consider a Simplified Setting: 

• Let  be integers. We wish to compute a public circuit  representing a 
deterministic -ary function , and give all parties the same output . 

• We will assume every pair of parties can communicate over a secure (private and 
authenticated) channel, and that their communication is synchronous (i.e. it proceeds 
in rounds and everyone knows when a round starts and ends). 

Notation: for any , let  denote an entire Shamir sharing of , and let  
denote the th share. That is, let . Notice that these 
are random variables even if  is fixed!

p > n > t C
n f : 𝔽n

p → 𝔽p z

a ∈ 𝔽p ⟨a⟩ a ⟨a⟩i
i ⟨a⟩ = (⟨a⟩1, …, ⟨a⟩n) ← 𝖲𝗁𝖺𝗋𝖾p,n,t(a)

a



A First Look at the BGW Protocol
A Trusted Third Party who knew all the inputs would evaluate the circuit one gate at 
a time in topological order starting from the inputs.  

x1

x2

x3

×

+

+

×

×



A Trusted Third Party who knew all the inputs would evaluate the circuit one gate at 
a time in topological order starting from the inputs.  

A First Look at the BGW Protocol
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A Trusted Third Party who knew all the inputs would evaluate the circuit one gate at 
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A First Look at the BGW Protocol
A Trusted Third Party who knew all the inputs would evaluate the circuit one gate at 
a time in topological order starting from the inputs.  
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A Trusted Third Party who knew all the inputs would evaluate the circuit one gate at 
a time in topological order starting from the inputs.  

A First Look at the BGW Protocol

x1

x2

x3

×

+

+

×

×

y1

y2

y3

y4



A First Look at the BGW Protocol
A Trusted Third Party who knew all the inputs would evaluate the circuit one gate at 
a time in topological order starting from the inputs.  

x1

x2

x3

×

+

+

×

×

y1

y2

y3

y4

z



A First Look at the BGW Protocol

x1

x2

x3

×

+

+

×

×

⟨x1⟩

⟨x2⟩

⟨x3⟩

The BGW Protocol proceeds exactly like this, except that all wire values are Shamir-
shared. Each party knows one share of the value on each wire. 



A First Look at the BGW Protocol

x1

x2

x3

×

+

+

×

×

⟨y1⟩
⟨x1⟩

⟨x2⟩

⟨x3⟩

Each Gate operates on shares instead of logical values. Some gates involve interaction. 

The BGW Protocol proceeds exactly like this, except that all wire values are Shamir-
shared. Each party knows one share of the value on each wire. 



A First Look at the BGW Protocol

x1

x2

x3

×

+

+

×

×

⟨y2⟩

⟨x1⟩

⟨x2⟩

⟨x3⟩

⟨y1⟩

Each Gate operates on shares instead of logical values. Some gates involve interaction. 

The BGW Protocol proceeds exactly like this, except that all wire values are Shamir-
shared. Each party knows one share of the value on each wire. 



A First Look at the BGW Protocol

x1

x2

x3

×

+

+

×

×

⟨y2⟩

⟨y3⟩

⟨x1⟩

⟨x2⟩

⟨x3⟩

⟨y1⟩

Each Gate operates on shares instead of logical values. Some gates involve interaction. 

The BGW Protocol proceeds exactly like this, except that all wire values are Shamir-
shared. Each party knows one share of the value on each wire. 



A First Look at the BGW Protocol

x1

x2

x3

×

+

+

×

× ⟨y3⟩

⟨y4⟩

⟨x1⟩

⟨x2⟩

⟨x3⟩

⟨y1⟩

⟨y2⟩

Addition Gates can be evaluated non-interactively as we have just seen! 

The BGW Protocol proceeds exactly like this, except that all wire values are Shamir-
shared. Each party knows one share of the value on each wire. 



A First Look at the BGW Protocol

x1

x2

x3

×

+

+

×

× ⟨y3⟩

⟨y4⟩

⟨z⟩

⟨x1⟩

⟨x2⟩

⟨x3⟩

⟨y1⟩

⟨y2⟩

The BGW Protocol proceeds exactly like this, except that all wire values are Shamir-
shared. Each party knows one share of the value on each wire. 

Addition Gates can be evaluated non-interactively as we have just seen! 



A First Look at the BGW Protocol
In order to complete the picture, we need to supply inputs and reveal outputs. 
Adding these actions to the circuit evaluation you’ve just seen gives us three phases: 

1. Input Sharing: every  with input  computes  
                        and sends  to every  for . 

2. Circuit Evaluation: the parties traverse the circuit  in topological order, 
                        evaluating each gate to produce shares of its output wire, 
                        until they collectively obtain  (i.e. each  learns only ). 
 
                        If  is linear, then  contains only addition and scalar 
                        multiplication gates  this phase is non-interactive. 

3. Output Reconstruction: Each  sends  to all other parties. Since all parties 
                        now have complete knowledge of , they can each compute 
                         and output .

Pi xi ⟨xi⟩ ← 𝖲𝗁𝖺𝗋𝖾p,n,t(xi)
⟨xi⟩j Pj j ∈ [n]∖{i}

C

⟨z⟩ Pi ⟨z⟩i

f C
⟹

Pi ⟨z⟩i
⟨z⟩

z := 𝖱𝖾𝖼𝗈𝗇p,n,t([n], ⟨z⟩) z



A Proof Sketch of Security for Linear Functions
Theorem 1: Let . Assuming synchronicity and secure channels, every linear 
deterministic -ary function  with a single output can be securely computed 
in the presence of a semi-honest  that statically corrupts up to  parties. 

Pf Sketch: because  is deterministic and  is semi-honest it suffices to show 
correctness and simulatability individually. 

Correctness follows directly from the correctness and linearity of Shamir sharing. 

Simulatability comes from the following claim.

p > n > t
n f : 𝔽n

p → 𝔽p
𝒜 n − 1

f 𝒜

Claim 1: Let . Then there exists an algorithm  such that for 
every  we have .

I = {i1, …, it} ⊂ [n] 𝖲𝗂𝗆
⃗x ∈ 𝔽n

p 𝖲𝗂𝗆(I, xI, f( ⃗x)) ≡ 𝖵𝖨𝖤𝖶I



A Proof Sketch of Security for Linear Functions
Claim 1: Let . Then there exists an algorithm  such that for 
every  we have .

I = {i1, …, it} ⊂ [n] 𝖲𝗂𝗆
⃗x ∈ 𝔽n

p 𝖲𝗂𝗆(I, xI, f( ⃗x)) ≡ 𝖵𝖨𝖤𝖶I

In Phase 1: the adversary  receives  shares of  from each honest party (one share for 
each party it has corrupted). By the privacy property of Shamir-sharing  can sample 
identically-distributed shares without knowing the honest parties’ inputs by running 
their code with input 0. Since  is semi-honest,  can run the corrupt parties’ code 
normally on their inputs (which  knows) in order to simulate their messages. 

In Phase 2: there is no interaction.  can predict the shares of  that the corrupt 
parties should obtain by running their code on the data in their views. 

In Phase 3:  receives 1 share of  from each honest party.  knows  already, and it 
knows the shares that the corrupt parties possess from phase 2. Since these completely 
fix the honest parties shares, it can perfectly compute those shares by interpolating! 

𝒜 t xi
𝖲𝗂𝗆

𝒜 𝖲𝗂𝗆
𝖲𝗂𝗆

𝖲𝗂𝗆 z

𝒜 z 𝖲𝗂𝗆 z

∎



Next Time: How do We Multiply?
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