
CS4501 Cryptographic Protocols
Lecture 7: Interpolation, Linearity,

Circuits

https://jackdoerner.net/teaching/#2026/Spring/CS4501

• Given: pairwise distinct
 and .

• Find: satisfying:

(i1, …, it+1) ∈ 𝔽 t+1
p

(si1, …, sit+1) ∈ 𝔽 t+1
p

f(x) = + ⋅ x + … ⋅ xt

f(i1) = + ⋅ i1 + … ⋅ it
1 = si1

f(i2) = + ⋅ i2 + … ⋅ it
2 = si2

⋯
f(it+1) = + ⋅ it+1 + … ⋅ it

t+1 = sit+1

Interpolation: the Problem

s2 s3 s6m

(Example for t=2)

m ata1

This is a linear system with equations and
 variables, so…

t + 1
t + 1

m ata1

m ata1

m ata1

• Given: pairwise distinct
 and .

• Find: satisfying:

(i1, …, it+1) ∈ 𝔽 t+1
p

(si1, …, sit+1) ∈ 𝔽 t+1
p

f(x) = + ⋅ x + … ⋅ xt

1 i1 ⋯ it
1

⋮ ⋮ ⋱ ⋮
1 it+1 ⋯ it

t+1
⋮ =

s1
s2
⋮

st+1

Interpolation: the Problem

s2 s3 s6m

(Example for t=2)

This is called a
Vandermonde Matrix

It has determinant , therefore…∏
0≤ j<k≤t+1

(ik − ij) ≠ 0

m

m

ata1

a1

at

• Given: pairwise distinct
 and .

• Find: satisfying:

(i1, …, it+1) ∈ 𝔽 t+1
p

(si1, …, sit+1) ∈ 𝔽 t+1
p

f(x) = + ⋅ x + … ⋅ xt

⋮ =
1 i1 ⋯ it

1
⋮ ⋮ ⋱ ⋮
1 it+1 ⋯ it

t+1

−1 s1
s2
⋮

st+1

Interpolation: the Problem

s2 s3 s6m

(Example for t=2)

m ata1

m
a1

at

… it is always invertible.

Let’s turn this into an interpolation algorithm for
directly recovering any point on the polynomial!

(Chalkboard Proof)

Def 1 (Lagrange Basis): Given a set of distinct values , the
Lagrange bases of degree are defined as:

t + 1 x1, …, xt+1 ∈ 𝔽 t + 1
≤ t ∀i ∈ [t + 1]

ℓi(x) = ∏
j∈[t+1]∖{i}

x − xj

xi − xj

Def 2 (Lagrange Polynomial): Given a set of points , with
distinct x-coordinates, the degree Lagrange polynomial is:

t + 1 (x1, y1), …, (xt+1, yt+1) ∈ 𝔽2

≤ t
L(x) = ∑

i∈[t+1]

yi ⋅ ℓi(x)

• depend only upon , so
any group of parties that wish to reconstruct can
precompute the appropriate Lagrange bases.
Then reconstruct is simply a linear combination.

• To recover the parties only need to precompute
.

• If is large, we can choose the indexes of the
parties to make reconstruction more efficient!
(e.g. so that we multiply by powers of 2)

ℓ1(x), …, ℓt+1(x) i1, …, it+1

m
ℓ1(0), …, ℓt+1(0)

p

Interpolating Shamir Shares Efficiently

s2 s3 s6m

(Example for t=2)

Memory-Efficient Secret Sharing

s2 s3 s6m

(Example for t=2, r=4)

• Question: So far we encoded a single secret,
achieved privacy against corrupt parties,
and required parties to reconstruct. What if
we require parties to reconstruct (i.e. use a
polynomial of degree instead of)?
Answer: We can encode two secrets!
In general, for corruptions and reconstruction
parties, you can encode secrets.
This is called packed secret sharing.
Checking that you still get correctness and
privacy would be a good exercise for you!
…but I’m not assigning it for homework.

t
t + 1

t + 2
t + 1 t

t r
r − t

m′￼ s5

Linear Secret Sharing Schemes
Definition 3: A secret sharing scheme is linear if and only if:
1. The message space is a group. That is, for some group and every valid , .
2. The randomness consumed by the algorithm can be cast a vector of elements of .
3. Each share is a fixed, publicly known linear combination of and .

Question: is Shamir Secret Sharing linear?
Answer: Yes! This means we can write the algorithm as a matrix multiplication.

𝔾 m m ∈ 𝔾
𝖲𝗁𝖺𝗋𝖾 ⃗a 𝔾

si m ⃗a

𝖲𝗁𝖺𝗋𝖾

s1
s2
⋮
sn

:=
1 i1 ⋯ in−1

1
⋮ ⋮ ⋱ ⋮
1 in ⋯ in−1

n

⋮

0
⋮
0

m
a1

at

We don’t strictly need a field here:
for and , can be defined as
a scalar product. That is,

i ∈ ℕ a ∈ 𝔾 i ⋅ a
i ⋅ a = a + … + a

i times

However, if we aren’t operating over a
field, we might not be able to reconstruct!

Linear Secret Sharing Schemes
Now Suppose we add together sharings of two different values. What happens?

s1
s2
⋮
sn

:=
1 i1 ⋯ in−1

1
⋮ ⋮ ⋱ ⋮
1 in ⋯ in−1

n

⋮

0
⋮
0

m
a1

at

s′￼1

s′￼2
⋮
s′￼n

:=
1 i1 ⋯ in−1

1
⋮ ⋮ ⋱ ⋮
1 in ⋯ in−1

n

⋮

0
⋮
0

m′￼

a′￼1

a′￼t

s1
s2
⋮
sn

+

s′￼1

s′￼2
⋮
s′￼n

=
1 i1 ⋯ in−1

1
⋮ ⋮ ⋱ ⋮
1 in ⋯ in−1

n

⋮

0
⋮
0

+
1 i1 ⋯ in−1

1
⋮ ⋮ ⋱ ⋮
1 in ⋯ in−1

n

⋮

0
⋮
0

m
a1

at

m′￼

a′￼1

a′￼t =
1 i1 ⋯ in−1

1
⋮ ⋮ ⋱ ⋮
1 in ⋯ in−1

n

⋮

0
⋮
0

m + m′￼

a1 + a′￼1

at + a′￼t

Linear Secret Sharing Schemes
Now Suppose we add together sharings of two different values. What happens?

s1
s2
⋮
sn

+

s′￼1

s′￼2
⋮
s′￼n

=
1 i1 ⋯ in−1

1
⋮ ⋮ ⋱ ⋮
1 in ⋯ in−1

n

⋮

0
⋮
0

+
1 i1 ⋯ in−1

1
⋮ ⋮ ⋱ ⋮
1 in ⋯ in−1

n

⋮

0
⋮
0

m
a1

at

m′￼

a′￼1

a′￼t =
1 i1 ⋯ in−1

1
⋮ ⋮ ⋱ ⋮
1 in ⋯ in−1

n

⋮

0
⋮
0

m + m′￼

a1 + a′￼1

at + a′￼t

We have a secret sharing of the sum of the values.

Observation: if and are uniformly distributed in , then is too.a a′￼ 𝔽 a + a′￼

Thus if we have and then is uniform in .f ← 𝒫p,t,m f′￼ ← 𝒫p,t,m′￼
g = f + f′￼ 𝒫p,t,(m+m′￼)

It fulfills our privacy definition! Notice that there is a correlation, between, though…g, f, f′￼

Two Dealers Distribute a Sum…

Input: x1 ∈ 𝔽p Input: x2 ∈ 𝔽p
Sample:
 Share:

f1 ← 𝒫p,t,x1
∀i ∈ [n], yi = f(i)

Sample:
 Share:

f2 ∈ 𝒫p,t,x2
∀i ∈ [n], zi = f(i)

y1
z1

y2
z2

y3
z3

y4
z4

y5
z5

x1

x2

Two Dealers Distribute a Sum…

Input: x1 ∈ 𝔽p Input: x2 ∈ 𝔽p
Sample:
 Share:

f1 ← 𝒫p,t,x1
∀i ∈ [n], yi = f(i)

Sample:
 Share:

f2 ∈ 𝒫p,t,x2
∀i ∈ [n], zi = f(i)

y1
z1

y2
z2

y3
z3

y4
z4

y5
z5

x1

x2

w1 = y1 + z1 w2 = y2 + z2 w3 = y3 + z3 w4 = y4 + z4 w5 = y5 + z5

The parties can compute a sharing of the sum without interacting!
(no interaction they cannot possibly learn anything new)⟹

x1 + x2

Two Dealers Distribute a Sum…
Input: x1 ∈ 𝔽p Input: x2 ∈ 𝔽p

Sample:
 Share:

f1 ← 𝒫p,t,x1
∀i ∈ [n], yi = f(i)

Sample:
 Share:

f2 ∈ 𝒫p,t,x2
∀i ∈ [n], zi = f(i)

y1
z1

y2
z2

y3
z3

y4
z4

y5
z5

x1

x2

w1 = y1 + z1 w2 = y2 + z2 w3 = y3 + z3 w4 = y4 + z4 w5 = y5 + z5

x1 + x2

Because they have a degree- Shamir sharing of , they can
perform additional operations on it! e.g. scalar multiplication by .

t x1 + x2
c

c c c c c

v1 = c ⋅ w1 v3 = c ⋅ w3v2 = c ⋅ w2 v5 = c ⋅ w5v4 = c ⋅ w4

(x1 + x2) ⋅ c

Two Dealers Distribute a Sum…

y1
z1

y2
z2

y3
z3

y4
z4

y5
z5

x1

x2

w1 = y1 + z1 w2 = y2 + z2 w3 = y3 + z3 w4 = y4 + z4 w5 = y5 + z5

x1 + x2

c c c c c

v1 = c ⋅ w1 v3 = c ⋅ w3v2 = c ⋅ w2 v5 = c ⋅ w5v4 = c ⋅ w4

(x1 + x2) ⋅ c

(Example for t=2)

Since correspond to a uniform
member of , learns nothing
about , beyond .

v1, …, v5
𝒫p,t,(x1+x2)⋅c

x1 x2 (x1 + x2) ⋅ c

Notice that anyone who receives
shares shares can reconstruct .

t + 1
(x1 + x2) ⋅ c

…even if also knows shares of , . Why?t x1 x2

x1

x6

r ← ℤM

x2

x3

x4

x5

m 1
= x 1

+ r mod M

m2 = x2 + m1 mod M

m
3 = x3 + m

2 mod M m 4
= x 4

+ m 3
mod M

m5 = x5 + m4 mod M

m
6 = x6 + m

5 mod M

y = m7 = m6 − r mod M

B

Example: -Party Sumn
• In previous lectures we saw this protocol.

We proved it was secure against one
semi-honest corruption and demonstrated
that it was insecure against two.

• Is there a way to achieve security against
more corruptions? How many?

• How many rounds of interaction do we need?

Arithmetic Circuits:
How to Model Multi-Step Computations

• In 1938 proved that boolean logic could be used to analyze digital computers.

• Since then the overwhelming majority of computer hardware has been digital, and
the overwhelming majority of theory has concerned boolean circuits (or other
models of equivalent expressive power, such as Turing machines).

• There are truth tables for a 2-ary boolean logic gate. Of these, 2 have constant
output (0,1) and 4 depend upon only one input wire (e.g. NOT). The other 10 are:
AND, OR, XOR, NAND, NOR, XNOR, …

24

Quiz: what gates have
these truth tables?

Boolean Circuits

Boolean Circuits
• In 1938 proved that boolean logic could be used to analyze digital computers.

• Since then the overwhelming majority of computer hardware has been digital, and
the overwhelming majority of theory has concerned boolean circuits (or other
models of equivalent expressive power, such as Turing machines).

• There are truth tables for a 2-ary boolean logic gate. Of these, 2 have constant
output (0,1) and 4 depend upon only one input wire (e.g. NOT). The other 10 are:
AND, OR, XOR, NAND, NOR, XNOR, IMPLY , NIMPLY

• We use gates to build circuits. A circuit is a directed acyclic graph. The edges are
wires and the nodes are gates, inputs, or outputs. Usually we allow fan-out: the output
of a gate can connect to many inputs. Evaluation happens in topological order.

24

(×2) (×2)

Note: Sorry hardware people - latches are forbidden here because they are cyclic.

Boolean Circuits
Every boolean function can be represented as a boolean circuit. Let

 be the input wires and be the output wires.

1. For every write down the truth table with respect to . There are rows.
Each row maps some assignment of to some assignment of .

2. If row has , then let , , and
. If row has , then let .

3. Now you can compute . This is Disjunctive Normal Form.

f : {0,1}n → {0,1}m

x1, …, xn n z1, …, zm m

j ∈ [m] zj 2n

k xk
1, …, xk

n zk
j

k zk
j = 1 Sk

j = {i ∈ [n] : xk
i = 1} Tk

j = {i ∈ [n] : xk
i = 0}

Ck
j (x1, …, xn) = ⋀

i∈Sk
j

xi ⋀
i∈Tk

j

¬xi k zk
j = 0 Ck

j (x1, …, xn) = 0

zj = ⋁
k∈[2n]

Ck
j (x1, …, xn)

Note: The size of the circuit we define this way might be exponential!

Boolean Circuits
Every boolean function can be represented as a boolean circuit. Let

 be the input wires and be the output wires.

1. For every write down the truth table with respect to . There are rows.
Each row maps some assignment of to some assignment of .

2. If row has , then let , , and
. If row has , then let .

3. Now you can compute . This is Disjunctive Normal Form.

Any set of boolean gates that can be used to express all functions is called complete.
Above we used but other combinations work, such as .

f : {0,1}n → {0,1}m

x1, …, xn n z1, …, zm m

j ∈ [m] zj 2n

k xk
1, …, xk

n zk
j

k zk
j = 1 Sk

j = {i ∈ [n] : xk
i = 1} Tk

j = {i ∈ [n] : xk
i = 0}

Ck
j (x1, …, xn) = ⋀

i∈Sk
j

xi ⋀
i∈Tk

j

¬xi k zk
j = 0 Ck

j (x1, …, xn) = 0

zj = ⋁
k∈[2n]

Ck
j (x1, …, xn)

(∧ , ∨ , ¬) (∧ , ⊕ , 1)

(Small Quiz: What is this Circuit?)

x1

x2

x3

z3

Answer: 2-of-3 threshold.

AND

AND

AND

OR

OR

Arithmetic Circuits
• In this class, we will think about arithmetic circuits over . Each wire contains a

value from . Each gate is a 2-ary function . There are possible gates!

• In order represent any -ary function as an arithmetic circuit, we need a
complete set of gates for . Any idea which ones?

• Since are the fundamental operations on , it had better be those! We also
need a constant (for algebraists: not every possible input includes a generator).

Claim: any function can be expressed using . Can you see how?

Pf Sketch: To compute the th output , write the truth table and find the
multivariate Lagrange polynomial that passes through the points defined by the rows of
the truth table. This Lagrange polynomial computes using and constants.

𝔽p
𝔽p 𝔽2

p → 𝔽p pp2

n f : 𝔽n
p → 𝔽m

p
𝔽p

(⋅ , +) 𝔽p

f : 𝔽n
p → 𝔽m

p (⋅ , + ,1)

j zj ∈ 𝔽p

f (⋅ , +)

Note: The degree of the polynomial we define this way might be exponential!

Generalization Note
Note that boolean circuits correspond to arithmetic circuits over with .

 is equivalent to in , and is equivalent to .
𝔽p p = 2

∧ ⋅ 𝔽2 ⊕ +

Putting the Pieces Together

A First Look at the BGW Protocol
• First described by Ben-Or, Goldwasser, Widgerson, 1988

• Securely computes arithmetic circuits over a finite field

• Achieves perfect security…

• …against an unbounded semi-honest statically corrupting up to parties.

• …against an unbounded malicious statically corrupting up to parties.

• We will see later that this is the best you can do if you want perfect security!

• Serves as the basis for more advanced protocols that handle adaptive corruption.

• Number of rounds grows with multiplicative depth of the function computed.

𝒜 t < n/2

𝒜 t < n/3

A First Look at the BGW Protocol
Let’s Consider a Simplified Setting:

• Let be integers. We wish to compute a public circuit representing a
deterministic -ary function , and give all parties the same output .

• We will assume every pair of parties can communicate over a secure (private and
authenticated) channel, and that their communication is synchronous (i.e. it proceeds
in rounds and everyone knows when a round starts and ends).

Notation: for any , let denote an entire Shamir sharing of , and let
denote the th share. That is, let . Notice that these
are random variables even if is fixed!

p > n > t C
n f : 𝔽n

p → 𝔽p z

a ∈ 𝔽p ⟨a⟩ a ⟨a⟩i
i ⟨a⟩ = (⟨a⟩1, …, ⟨a⟩n) ← 𝖲𝗁𝖺𝗋𝖾p,n,t(a)

a

A First Look at the BGW Protocol
A Trusted Third Party who knew all the inputs would evaluate the circuit one gate at
a time in topological order starting from the inputs.

x1

x2

x3

×

+

+

×

×

A Trusted Third Party who knew all the inputs would evaluate the circuit one gate at
a time in topological order starting from the inputs.

A First Look at the BGW Protocol

x1

x2

x3

×

+

+

×

×

y1

A First Look at the BGW Protocol
A Trusted Third Party who knew all the inputs would evaluate the circuit one gate at
a time in topological order starting from the inputs.

x1

x2

x3

×

+

+

×

×

y1

y2

A First Look at the BGW Protocol
A Trusted Third Party who knew all the inputs would evaluate the circuit one gate at
a time in topological order starting from the inputs.

x1

x2

x3

×

+

+

×

×

y1

y2

y3

A Trusted Third Party who knew all the inputs would evaluate the circuit one gate at
a time in topological order starting from the inputs.

A First Look at the BGW Protocol

x1

x2

x3

×

+

+

×

×

y1

y2

y3

y4

A First Look at the BGW Protocol
A Trusted Third Party who knew all the inputs would evaluate the circuit one gate at
a time in topological order starting from the inputs.

x1

x2

x3

×

+

+

×

×

y1

y2

y3

y4

z

A First Look at the BGW Protocol

x1

x2

x3

×

+

+

×

×

⟨x1⟩

⟨x2⟩

⟨x3⟩

The BGW Protocol proceeds exactly like this, except that all wire values are Shamir-
shared. Each party knows one share of the value on each wire.

A First Look at the BGW Protocol

x1

x2

x3

×

+

+

×

×

⟨y1⟩
⟨x1⟩

⟨x2⟩

⟨x3⟩

Each Gate operates on shares instead of logical values. Some gates involve interaction.

The BGW Protocol proceeds exactly like this, except that all wire values are Shamir-
shared. Each party knows one share of the value on each wire.

A First Look at the BGW Protocol

x1

x2

x3

×

+

+

×

×

⟨y2⟩

⟨x1⟩

⟨x2⟩

⟨x3⟩

⟨y1⟩

Each Gate operates on shares instead of logical values. Some gates involve interaction.

The BGW Protocol proceeds exactly like this, except that all wire values are Shamir-
shared. Each party knows one share of the value on each wire.

A First Look at the BGW Protocol

x1

x2

x3

×

+

+

×

×

⟨y2⟩

⟨y3⟩

⟨x1⟩

⟨x2⟩

⟨x3⟩

⟨y1⟩

Each Gate operates on shares instead of logical values. Some gates involve interaction.

The BGW Protocol proceeds exactly like this, except that all wire values are Shamir-
shared. Each party knows one share of the value on each wire.

A First Look at the BGW Protocol

x1

x2

x3

×

+

+

×

× ⟨y3⟩

⟨y4⟩

⟨x1⟩

⟨x2⟩

⟨x3⟩

⟨y1⟩

⟨y2⟩

Addition Gates can be evaluated non-interactively as we have just seen!

The BGW Protocol proceeds exactly like this, except that all wire values are Shamir-
shared. Each party knows one share of the value on each wire.

A First Look at the BGW Protocol

x1

x2

x3

×

+

+

×

× ⟨y3⟩

⟨y4⟩

⟨z⟩

⟨x1⟩

⟨x2⟩

⟨x3⟩

⟨y1⟩

⟨y2⟩

The BGW Protocol proceeds exactly like this, except that all wire values are Shamir-
shared. Each party knows one share of the value on each wire.

Addition Gates can be evaluated non-interactively as we have just seen!

A First Look at the BGW Protocol
In order to complete the picture, we need to supply inputs and reveal outputs.
Adding these actions to the circuit evaluation you’ve just seen gives us three phases:

1. Input Sharing: every with input computes
 and sends to every for .

2. Circuit Evaluation: the parties traverse the circuit in topological order,
 evaluating each gate to produce shares of its output wire,
 until they collectively obtain (i.e. each learns only).

 If is linear, then contains only addition and scalar
 multiplication gates this phase is non-interactive.

3. Output Reconstruction: Each sends to all other parties. Since all parties
 now have complete knowledge of , they can each compute
 and output .

Pi xi ⟨xi⟩ ← 𝖲𝗁𝖺𝗋𝖾p,n,t(xi)
⟨xi⟩j Pj j ∈ [n]∖{i}

C

⟨z⟩ Pi ⟨z⟩i

f C
⟹

Pi ⟨z⟩i
⟨z⟩

z := 𝖱𝖾𝖼𝗈𝗇p,n,t([n], ⟨z⟩) z

A Proof Sketch of Security for Linear Functions
Theorem 1: Let . Assuming synchronicity and secure channels, every linear
deterministic -ary function with a single output can be securely computed
in the presence of a semi-honest that statically corrupts up to parties.

Pf Sketch: because is deterministic and is semi-honest it suffices to show
correctness and simulatability individually.

Correctness follows directly from the correctness and linearity of Shamir sharing.

Simulatability comes from the following claim.

p > n > t
n f : 𝔽n

p → 𝔽p
𝒜 n − 1

f 𝒜

Claim 1: Let . Then there exists an algorithm such that for
every we have .

I = {i1, …, it} ⊂ [n] 𝖲𝗂𝗆
⃗x ∈ 𝔽n

p 𝖲𝗂𝗆(I, xI, f(⃗x)) ≡ 𝖵𝖨𝖤𝖶I

A Proof Sketch of Security for Linear Functions
Claim 1: Let . Then there exists an algorithm such that for
every we have .

I = {i1, …, it} ⊂ [n] 𝖲𝗂𝗆
⃗x ∈ 𝔽n

p 𝖲𝗂𝗆(I, xI, f(⃗x)) ≡ 𝖵𝖨𝖤𝖶I

In Phase 1: the adversary receives shares of from each honest party (one share for
each party it has corrupted). By the privacy property of Shamir-sharing can sample
identically-distributed shares without knowing the honest parties’ inputs by running
their code with input 0. Since is semi-honest, can run the corrupt parties’ code
normally on their inputs (which knows) in order to simulate their messages.

In Phase 2: there is no interaction. can predict the shares of that the corrupt
parties should obtain by running their code on the data in their views.

In Phase 3: receives 1 share of from each honest party. knows already, and it
knows the shares that the corrupt parties possess from phase 2. Since these completely
fix the honest parties shares, it can perfectly compute those shares by interpolating!

𝒜 t xi
𝖲𝗂𝗆

𝒜 𝖲𝗂𝗆
𝖲𝗂𝗆

𝖲𝗂𝗆 z

𝒜 z 𝖲𝗂𝗆 z

∎

Next Time: How do We Multiply?

CS4501 Cryptographic Protocols
Lecture 7: Interpolation, Linearity,

Circuits

https://jackdoerner.net/teaching/#2026/Spring/CS4501

