CS4501 Cryptographic Protocols
Lecture 7: Interpolation, Linearity,
Circuits

https://jackdoerner.net/teaching/#2026/Spring/CS4501

Interpolation: the Problem

. Given: pairwise distinct (i}, ..., 7,) € F'

t+1
and (Sl-l, ...,Sim) e
e Find:f(x)=m+ a,-x+ ... a-xsatisfying:
o . o R ".K.®‘ ““"‘
f(ll) — m + al ¢ ll + oooat. l]l: — Sll “,“ ----------- K'.‘“"
: 'NQ--"“‘
fG)=m+a;-i,+...q,- 15 =S
oL | .
f(lt+l) = m + al ’ lt-l—l + “’at * lt-l—l —_ Sit+1 m SHl 83 Se

A 4 | VI v | | | VI |

This is a linear system with 7 + | equations and
t + 1 variables, so... (Example for t=2)

Interpolation: the Problem

. Given: pairwise distinct (i}, ..., 7,) € F'

t+1
and (Sl-l, ...,Sim) e
e Find:f(x)=m+ a,-x+ ... a-xsatisfying:
. xCD o
1 L l{ " 1 ‘ o i
al S2 »® 1
. ot ¢
i | | g S
m S| 83 Se,

K_Tk&s s called a Y v]

vand nde Makri
andermonde Makrix (Example for b=2)

1t has determinant H (1, — ij) + 0, therefore...

0<j<k<r+1

Interpolation: the Problem

. Given: pairwise distinct (i}, ..., 7,) € F'

t+1
and (Sl-l, ...,Sim) e
e Find:f(x)=m+ a,-x+ ... a-x"satisfying:
1 7P
m 1] . ll Sl T et »@®
A 1 1 A . 7@
1 \) ‘@
: . y :
a, Loy | s,
j m S| 53 Se,

.o ik is always tnvertible. T

(Example for t=2)
Let’s turn this into an interpolation algorithm for

directly recovering any point on the polynomial!

(Chalkboard Proot)

Def 1 (Lagrange Basis): Given a set of # + 1 distinct values x, ..., x,.; € F, ther+ 1
Lagrange bases of degree < t are defined Vi € [1 4+ 1] as: /oo H X=X
i\X) =

jelm 1Ny 1 Y

Def 2 (Lagrange Polynomial): Given a set of + 1 points (x;, y;), ..., (x,, 1, ¥, ;) € [, with
distinct x-coordinates, the degree < ¢ Lagrange polynomial is:
L= D, v £

e(r+1]

Interpolating Shamir Shares Efficiently

o L1(x),....,0 1(x) dgpend on1.y upon i, ..., L, SO
any group of parties that wish to reconstruct can
precompute the appropriate Lagrange bases.
Then reconstruct is simply a linear combination.

o To recover m the parties only need to precompute KCD _____ 8-
£10), ... £151(0). o gut®”

o If pislarge, we can choose the indexes of the
parties to make reconstruction more eflicient!
(e.g. so that we multiply by powers of 2) m 5|8 S

A 4 | v | v | | | v | |
| | | | | | |

(Example for t=2)

Memory-Efficient Secret Sharing

e Question: So far we encoded a single secret,
achieved privacy against 7 corrupt parties,
and required 7 + 1 parties to reconstruct. What it
we require 7 + 2 parties to reconstruct (i.e. use a
polynomial of degree 7 + | instead of 7)? A0y

aB
““
“

Answer: We can encode two secrets! . 2@

In general, for 7 corruptions and r reconstruction
parties, you can encode r — 7 secrets.
This is called packed secret sharing. m'| m 5|8 55| S

Checking that you still get correctness and S A N P SRR S

privacy would be a good exercise for you! | | '
...but I'm not assigning it for homework. (Example for k=2, r=4)

Linear Secret Sharing Schemes

Definition 3: A secret sharing scheme is linear if and only if:

1. The message space is a group. That is, for some group & and every valid m, m € G.

2. The randomness consumed by the Share algorithm can be cast a vector « of elements of G.

3. Each share s; is a fixed, publicly known linear combination of /2 and .

Question: is Shamir Secret Sharing linear?

Answer: Yes! This means we can write the Share algorithm as a matrix multiplication.

We dont strictly need a field here:
n-1] | - for i€N and a €G, i-a can be defined as
a scalar prmdm‘:& That is, i-a=a+...+a

=1 0 i times
n .
(°) However, if we arent opera&hg over a

field, we might not be able to reconstruct!

Linear Secret Sharing Schemes

Now Suppose we add together sharings of two different values. What happens?

m m’
a a.
) . , 4 1
1 1 g I 1 51 | I
S2 / ll ll .
. :: E E ..o E at S2 O — : : ‘e : a,
. — f
' T 0 : . -
S, 1 by b : o 1 L, l,rll ! 0
. n
! 0
m m’ m+ m'
/
§ S/ al a] al -+ ai
1 1 1 n—1 1 - n—1 1 n—1
¢ / 3| 4| gl 4| g| 4|
2 S2 . a . . / /
- n—1 0 'n—1 n—1

Linear Secret Sharing Schemes

Now Suppose we add together sharings of two different values. What happens?

m m m -+ m
/

g S/ al a] al + ai

] 1 1 . -n1—1 . 1 . -n—1 1 l l‘n—l .

5, o gl gl g! 3| I I
T 7| = S 4 S al |=1|: ++ "~ a -+ a
: _ 11— n—1
Sn S’ 1 Iy lrrzl 1 U 1 by lrrzl 1 0 1 b I 0
n
0 0 0

_J

We have a secret sharing of the sum of the values.

Observation: if ¢ and ' are uniformly distributed in [, then a + &’ is too.
Thus it we have f < &, and [’ < &
[t fulfills our privacy definition! Notice that there is a correlation, between, g, f, /' though...

‘then ¢ = f+ f'is uniform in &, . .

9t9m Qtﬂm

Two Dealers Distribute a Sum...

Input: x, € [V 7 iz Input: x, € [
/ \
Sample: | < & @\\) @ Sample:/, € &,

Share:Vi € [n],y. = f(i) Share:Vi € [n],z. = f(i)

Two Dealers Distribute a Sum...
Input: x, € [7 Gz Input: x, € [
Sample: /| < Qp@p’t,xl %) Sample: f, € é’p,t,xz
Share:Vi € [n],y, = f(i) | Share:Vi € [n],z, = f(i)

The parties can compute a sharing of the sum without interacting!
(no interaction = they cannot possibly learn anything new)

WY ~®
O. ‘l Q.
X+ x| “
“. : .“‘
.“‘QE‘ ..0 ..0".“‘. gy
llll .: ‘:‘ o : o* ‘_
X «~ @ N 4 n
L, 2 ¢ 9
N s 4 N n
N ‘ ” .0. :. “ yl y2 y3 y4 ys
X, @ Y PO
o . <1 %) <3 <4 {5
|
|

Two Dealers Distribute a Sum...
Input: x; € [, ~ Input: x, € I,

Sample: /| < &, @ Sample: f, € &

Share:Vi € [n],y. = f(i)

p9t9x2

Share:Vi € [n],z. = f(i)

o Y1 Y2 Y3 Y4 Y5
K . o 21 %) 23 24 Zs
X +x |8 : "
[:
| e S0 9. W =yT7g Wy =Y T2 W3 =Y+ 23 Wp=Y4 T2 W5 = Y5+ Z5
. ': . ,’0 ‘o‘t:
K e e 8 C C C C C
. “ ’ "0: “
ne eV, g ...
———+—

Because they have a degree-f Shamir sharing of x, + x,, they can
M— — perform additional operations on it! e.g. scalar multiplication by c.

Two Dealers Distribute a Sum...

)1 Y2 Y3 Y4 Y5
<1 %) <3 <4 {5
wy =y +2 Wy =Y+ 2 W3 = Yy3 + 23 Wi =Y4t 24 W5 = Y5 + Zs
C C C C C
"“ .‘o. ',“
x1+x2 0: ‘: ‘.
TP el e Notice that anyone who receives 7 + |
. ,‘e;‘ shares shares can reconstruct
Tk, 9T e 9
e, & 5 in T n niform
ne Tl gl O o\ Since COTrespo to a uniform
| / member of , learns nothing
| | | | |
T about x,, x, beyond

(Example for t=2)

...even if {Z)) also knows ¢ shares of x|, x,. Why?

Example: n-Party Sum

e In previous lectures we saw this protocol.
We proved it was secure against one
semi-honest corruption and demonstrated
that it was insecure against two.

o Isthere a way to achieve security against
more corruptions? How many?

o« How many rounds of interaction do we need? @ @\

Arithmetic Circuits:
How to Model Multi-Step Computations

Boolean Circuits

e In 1938 proved that boolean logic could be used to analyze digital computers.

o Since then the overwhelming majority of computer hardware has been digital, and
the overwhelming majority of theory has concerned boolean circuits (or other
models of equivalent expressive power, such as Turing machines).

o There are 2* truth tables for a 2-ary boolean logic gate. Of these, 2 have constant

output (0,1) and 4 depend upon only one input wire (e.g. NOT). The other 10 are:
AND, OR, XOR, NAND, NOR, XNOR,

DD S D D D e D Quiz: what gates have

these truth tables?

Inp

Output
Q

1

1

0

1

(sl

pu

Output
1

ut In
Al B A
0|0 0
0|1 0
10 1
1|1 1

- | O = O @

Q
0
0
0

Boolean Circuits

e In 1938 proved that boolean logic could be used to analyze digital computers.

o Since then the overwhelming majority of computer hardware has been digital, and
the overwhelming majority of theory has concerned boolean circuits (or other
models of equivalent expressive power, such as Turing machines).

o There are 2* truth tables for a 2-ary boolean logic gate. Of these, 2 have constant

output (0,1) and 4 depend upon only one input wire (e.g. NOT). The other 10 are:
AND, OR, XOR, NAND, NOR, XNOR, IMPLY(Xx2), NIMPLY(x2)

D) g g s i e i e D — O e

o We use gates to build circuits. A circuit is a directed acyclic graph. The edges are
wires and the nodes are gates, inputs, or outputs. Usually we allow fan-out: the output
of a gate can connect to many inputs. Evaluation happens in topological order.

Note: Sorry hardware people - latches are forbidden here because they are cyclic,

Boolean Circuits

Every boolean function f: {0,1}" — {0,1}" can be represented as a boolean circuit. Let
X, ...,x, be the n input wires and z,, ..., z, be the m output wires.

1. For everyj € [m]| write down the truth table Wlth respect to z;. There are 2" rows.
Each row k& maps some assignment of xl, . x to some a331gnment of Z Z;

2. Ifrowkhasz = 1, thenletSk—{lE[n] x =1}, Tk—{le[n] x =0}, and
Ck(xl,-. Xn)— /\ /\—lx Ifrowkhasz = (), then let Ck(xl,.. , x,) =0

ieS" zeT"

3. Now you can compute z; = \/ C].k(xl, ..., x,). This is Disjunctive Normal Form.
ke[2"]

Note: The size of the circuit we define bthis way might be exponential’

Boolean Circuits

Every boolean function f: {0,1}" — {0,1}" can be represented as a boolean circuit. Let
X, ...,x, be the n input wires and z,, ..., z, be the m output wires.

1. For everyj € [m]| write down the truth table Wlth respect to z;. There are 2" rows.
Each row k& maps some assignment of xl, . x to some a331gnment of Z Z;

2. Ifrowkhasz = 1, thenletSk—{lE[n] x =1}, Tk—{le[n] x =0}, and
Ck(xl,-- X)—/\ /\—lx Ifrowkhasz = 0, thenletCk(xl,.. ,x,) =0

ieS" zeT"

3. Now you can compute z; = \/ C}k(xl, ..., x,). This is Disjunctive Normal Form.
ke[2"]

Any set of boolean gates that can be used to express all functions is called complete.
Above we used (A, V,) but other combinations work, suchas (A, &, 1).

(Small Quiz: What is this Circuit?)

Answer: 2-of-3 threshold.

Arithmetic Circuits

o In this class, we will think about arithmetic circuits over [F Each ere contains a
value from [,. Each gate is a 2-ary function [I:2 - [, There are pp possible gates!

e In order represent any n-ary function f : [, — [as an arithmetic circuit, we need a
complete set of gates for [-,. Any idea which ones?

o Since (-, +) are the fundamental operations on F it had better be those! We also
need a constant (for algebraists: not every possible input includes a generator).

Claim: any tunction f : [, — [can be expressed using (-, + ,1). Can you see how?

Pt Sketch: To compute the jth output z; € [, write the truth table and find the

multivariate Lagrange polynomial that passes through the points defined by the rows of
the truth table. This Lagrange polynomial computes f using (- , +) and constants.

Note: The degree of the polynomial we define this way might be exponential’

Generalization Note

Note that boolean circuits correspond to arithmetic circuits over [, with p = 2.
A 1s equivalent to - in [, and @ is equivalent to +.

Putting the Pieces Together

A First Look at the BGW Protocol

o First described by Ben-Or, Goldwasser, Widgerson, 1988

o Securely computes arithmetic circuits over a finite field

o Achieves perfect security...
e ...against an unbounded semi-honest &/ statically corrupting up to 7 < n/2 parties.
e ...against an unbounded malicious & statically corrupting up to 7 < n/3 parties.
o We will see later that this is the best you can do if you want pertect security!

e Serves as the basis for more advanced protocols that handle adaptive corruption.

o Number of rounds grows with multiplicative depth of the function computed.

A First Look at the BGW Protocol

Let’s Consider a Simplified Setting:

o Let p > n > tbe integers. We wish to compute a public circuit C representing a
deterministic n-ary function f :) — [, and give all parties the same output z.

« We will assume every pair of parties can communicate over a secure (private and
authenticated) channel, and that their communication is synchronous (i.e. it proceeds
in rounds and everyone knows when a round starts and ends).

Notation: for any a € [, let (@) denote an entire Shamir sharing of ¢, and let (a),

denote the ith share. That is, let (a) = ({a),,....(a),) < Share,, (a). Notice that these
are random variables even if a is fixed!

A First Look at the BGW Protocol

A Trusted Third Party who knew all the inputs would evaluate the circuit one gate at
a time in topological order starting from the inputs.

A First Look at the BGW Protocol

A Trusted Third Party who knew all the inputs would evaluate the circuit one gate at
a time in topological order starting from the inputs.

Y1

A First Look at the BGW Protocol

A Trusted Third Party who knew all the inputs would evaluate the circuit one gate at
a time in topological order starting from the inputs.

Y1

A First Look at the BGW Protocol

A Trusted Third Party who knew all the inputs would evaluate the circuit one gate at
a time in topological order starting from the inputs.

A First Look at the BGW Protocol

A Trusted Third Party who knew all the inputs would evaluate the circuit one gate at
a time in topological order starting from the inputs.

A First Look at the BGW Protocol

A Trusted Third Party who knew all the inputs would evaluate the circuit one gate at
a time in topological order starting from the inputs.

N2
o~/
>

X1

L=

A First Look at the BGW Protocol

The BGW Protocol proceeds exactly like this, except that all wire values are Shamir-
shared. Each party knows one share of the value on each wire.

(x1) vb
(x) X ~
(X3) ‘D

)+

A First Look at the BGW Protocol

The BGW Protocol proceeds exactly like this, except that all wire values are Shamir-
shared. Each party knows one share of the value on each wire.

()

vb o) B
(x) X ~
(X3) ‘ D

Each Gate operates on shares instead of logical values. Some gates involve interaction.

A First Look at the BGW Protocol

The BGW Protocol proceeds exactly like this, except that all wire values are Shamir-
shared. Each party knows one share of the value on each wire.

(x1) vb V1) P
(x) X ~
(X3) ‘D

Each Gate operates on shares instead of logical values. Some gates involve interaction.

A First Look at the BGW Protocol

The BGW Protocol proceeds exactly like this, except that all wire values are Shamir-
shared. Each party knows one share of the value on each wire.

)

vb o) B
(x) X ~
LT

Each Gate operates on shares instead of logical values. Some gates involve interaction.

A First Look at the BGW Protocol

The BGW Protocol proceeds exactly like this, except that all wire values are Shamir-
shared. Each party knows one share of the value on each wire.

(x)

vb o) B
) D) (Va)
LT

Addition Gates can be evaluated non-interactively as we have just seen!

A First Look at the BGW Protocol

The BGW Protocol proceeds exactly like this, except that all wire values are Shamir-
shared. Each party knows one share of the value on each wire.

(X1 (y:)
v b Y1 » .

<xZ>) .
) =

(x3) (y3)

Addition Gates can be evaluated non-interactively as we have just seen!

A First Look at the BGW Protocol

In order to complete the picture, we need to supply inputs and reveal outputs.
Adding these actions to the circuit evaluation you've just seen gives us three phases:

1. Input Sharing: every P; with input x; computes (x;) < Share,, ,(x;)
and sends (x;); to every P, for j € [n]\{i}.

2. Circuit Evaluation: the parties traverse the circuit C in topological order,
evaluating each gate to produce shares of its output wire,
until they collectively obtain (z) (i.e. each P, learns only (z))).

If /is linear, then C contains only addition and scalar
multiplication gates = this phase is non-interactive.

3. Output Reconstruction: Each P; sends (z), to all other parties. Since all parties
now have complete knowledge of (z), they can each compute
z := Recon,, , ([n], (z)) and output z.

A Proof Sketch of Security for Linear Functions

Theorem 1: Let p > n > . Assuming synchronicity and secure channels, every linear
deterministic n-ary tunction / :) — [with a single output can be securely computed

in the presence of a semi-honest </ that statically corrupts up to n — 1 parties.

Pf Sketch: because f is deterministic and </ is semi-honest it suffices to show
correctness and simulatability individually.

Correctness tollows directly from the correctness and linearity of Shamir sharing.

Simulatability comes from the following claim.

Claim 1: Let / = {7, ...,1,} C [n]. Then there exists an algorithm Sim such that for
every x € [F) we have Sim(/, x;, /(X)) = VIEW,.

A Proof Sketch of Security for Linear Functions

Claim 1: Let / = {7, ...,1,} C [n]. Then there exists an algorithm Sim such that for
every x € [F) we have Sim(/, x;, /(X)) = VIEW,.

In Phase 1:the adversary </ receives 7 shares of x. from each honest party (one share for
each party it has corrupted). By the privacy property of Shamir-sharing Sim can sample
identically-distributed shares without knowing the honest parties’ inputs by running
their code with input 0. Since </ is semi-honest, Sim can run the corrupt parties’ code
normally on their inputs (which Sim knows) in order to simulate their messages.

In Phase 2: there is no interaction. Sim can predict the shares of 7 that the corrupt
parties should obtain by running their code on the data in their views.

In Phase 3: o/ receives 1 share of 7z from each honest party. Sim knows 7 already, and it
knows the shares that the corrupt parties possess from phase 2. Since these completely
fix the honest parties shares, it can pertectly compute those shares by interpolating! B

Next Time: How do We Multiply?

CS4501 Cryptographic Protocols
Lecture 7: Interpolation, Linearity,
Circuits

https://jackdoerner.net/teaching/#2026/Spring/CS4501

