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General Secret Sharing

The Setting:

A dealer D holds a secret m € /.

D wants to share m among n parties.

D can communicate with each P; over a
private channel to send share s..

Authorized subsets of parties can
reconstruct m from their shares.

The collection of all authorized sets is
called the access structure, denoted I

Unauthorized subsets cannot learn any
new information about m.

The collection of all unauthorized sets is
called the forbidden structure.




General Secret Sharing

Definition 1. Syntax for Secret Sharing

A secret-sharing scheme for access structure [ over & = { P, ..., P, } with message
space .Z/ is a pair of algorithms (Share, Recon) such that:

e (5,...,5,) < Share(m) samples n shares given a secret m € /.

o M = Recon((il, ) (Sil, ey S )) outputs the secret m if and only if it is
given a set of shares {Sil, .. } such that {P el lk} el.

Definition 2. Correctness for Secret Sharing

Vme M, it (s, ...,s,) < Share(m), then V{i,,...,i,} C [n] such that it {P

L P} el
it holds that m = Recon((il, ) (Sil, e Sl-k)).



General Secret Sharing

Definition 2. Correctness for Secret Sharing

Vme M, it (s, ...,s,) < Share(m), then V{i,,...,i,} C [n] such that it {Pl-l, ...,Pl-k} el
it holds that m = Recon((il, ) (sil, el sik)).

Definition 3. Perfect Privacy for Secret Sharing

Vm,my € M, Vi ....i,} C [n]suchthatit {P,,.... P, } ¢ T

it holds that {Sil, by ) (81 .vnsS,) Share(ml)} {S S; L (S)y.enyS,) Share(mz)}

k-

Definition 4. Threshold Secret Sharing

A (1 + 1)-of-n threshold secret sharing (TSS) scheme is any secret sharing scheme
where the access structure comprises all subsets of parties of size greater than .
In other words, a secret sharing scheme with ' = {X C 2 : | X| > 1}.



The Simplest Case: n-of-n XOR sharing

o Consider .Z = {0,1}? for some Z € N.
e Share(m):
1. Sample s, ....,s,_; < {0,1}°.
2. Computes, ;=m@s, D...Ds,_,.
3. Output (s, ...,5,).
e Recon(sy,...,s,):
1. Outputs, @ ... Ds,.

Note: if i € [n] such that &/ does not know s,
then &/ does not have any information about .

Note: Vi € [n], |s;| = |m|. So collectively we store n - £ bits.



(t + 1)-of-n from (¢t + 1)-of-(r + 1)

Let 7 be the maximum number of corruptions.

A Naive Construction: for every size-(7 + 1) subset of the parties, the Dealer
secret-shares s to that subset using a (7 + 1)-of-(7 + 1) secret sharing scheme.

Good News: correctness and privacy are trivially inherited.

n

Bad News: there are (
r+ 1

) subsets. This is exponential when 7 ~ n/2.



2-of-n from Simple 2D Geometry

e Consider Z = N
e Share(m):

1. Find a random line that intersects the y-axis
at m. Le. let f(x) = a - x + m where a is random.

2. Output (s,,...,5,) where s, = f(i) =i-a+m

o Recon((i,)), (s, Sj))=

j—i

1. Compute the slope a :=

2. Output the y-intercept s, — i - a.

Correctness: Every pair of shares completely determines 1.
Security: Every single share is independent of .




3-of-n from Simple 2D Geometry

e Consider Z = N
e Share(m):

1. Find a random parabola f that intersects the
y-axis at f(0) = m.

2. Output (s, ...,5,) where 5. = (i) Vi € [n]. .

o Recon((i, ], k), (s, 5, 5)):
3. Interpolate f(0).

Problem: how do we ensure all the shares are integers?

Deeper Problem: how do we choose a parabola “randomly.” There are infinitely many
parabolae and the uniform distribution is not well-defined over infinite domains.



3-of-n from Simple 2D Geometry

To fix this problem, we need to be able to
compute polynomials over some finite domain.

This will guarantee that uniform distributions
are well defined, and that shares can be encoded
efficiently.

N, Z, R, 0, C don't work: they re all infinite.

We need a domain that supports addition and
multiplication, and the inverses of those operations.

In order to identity such a domain, we have to

introduce some ideas from abstract algebra.




We can Categorize by Axioms

Let G beasetand x : G X (G — (5 be a binary operation such that G is closed under *.
Definition 5: (G, % ) is a group if and only if all of the following axioms hold:

1. Associativity: Va,b,c € GG, a x (b % ¢) = (a x b) * c.

2. Identity: there exists an identity element i such that Va € Gwe havei xa =a xi = a.

3. Inverses: Va € G db € G such thata * b = 1.

Definition 6: (G, % ) is a commutative (a.k.a. abelian) group it it is a group, and:

4. Commutativity: Va,b € G we have a x b = b * a.

Definition 7: the order of (5, % ) is the size of G.

If a mathematical statement relies only on group axioms, it holds for any group.



Finite Groups (by Example)

Consider (Z,,, + ) where + is interpreted as addition modulo .
Closure: holds because the range of mod m is [0.m — 1] = Z .
Associativity, Identity, Commutativity: the same as integer + on Z. Identity element is 0.

Inverses: Because 0 + 0 = 0, the additive inverse of 0 is itselt.
Notice that m mod m = 0. The additive inverse of ¢ € Z, is a number b € Z,,
such that (¢ + ) mod m = m mod m = 0. Does b € Z,, always exist? Yes.

We will refer to the additive inverse of a as "—a”. Note that maybe |a| # | — a|!

You can imagine a finite group working like a clock:




We can Categorize by Axioms

Let Fbeasetand + : FX[F — [Fand - : F X [F — [ be binary operations under which [Fis closed.
Definition 8: (I, +, - ) is a field if and only if all of the following conditions hold:

1. ([, + ) is a commutative group. Let the additive identity be denoted 0.

2. (F\{0O}, - ) is a commutative group. Let the multiplicative identity be denoted 1.
3. Distributivity: Va,b,c € F wehavea-(b+c)=a-b+a - c.

Question: is (Z,, +, - ) a field (ops are modular)?  No. 2 has no multiplicative inverse.
is (Zs, +, - ) a field (ops are modular)?  Yes.

(1-1)mod5 =1

(2-3)mod5=6mod >S5 =1
3:-2)ymodS5S=6mod 5 =1
(4-4)modS=16mod5 =1

Next Question: for what valuesof mis (Z,, +, - ) a field?



(Chalkboard Proot)



A Few Notes

Notation: F, denotes a field of order p, and F,[x] denotes the set of all
polynomials in the variable x with coefficients in [,. Unless
otherwise specified, the operations for any field are denoted + and -.

Note 1: for the rest of the semester I will use [, and Z , interchangeably

if and only if p is prime. Z  for some non-prime m is a commutative ring,
which is like a field except that it lacks multiplicative inverses.

Note 2: is possible to construct a field of order p” for any prime p and any k € N,
but if k # | then the operations supported the field are not integer addition
and multiplication. Nevertheless, anything you prove from field axioms

holds for such fields!

Note 3: don't forget about groups! We will have more to say about them
later in the course when we start introducing assumptions.



Polynomials over [,

e Let O <7 < p where p is a prime.
o Let >, = {f€Fx]:deg(f) <tAf0)=m}.

e Everyjfe & ., isof the form
fX)=m+a;-x+a,-x*+...+a,-x'.

where a, ...,a, € [Fp.

. Thus |2,,,.| = |F,|" =p"




I + 1 Points Determine f € @p,t,m

o Last class we proved Lecture 5, Theorem 1:
any set of 7 + 1 points (x(, y;), ..., (X1, Vo)
with pairwise distinct x-coordinates define
a unique polynomial.

o We only used field axioms in that proof, so it
holds for F,[x] too.

Corollary 1:let x, ....x, € [ )\ {0} be pairwise
distinct and let y;, ...,y, € [, and m € [, "
There exists exactly one f € &, such

that f(x) = y. Vi € [1]. . L T T T



I + 1 Points Determine f € @p,t,m

Corollary 1:letx,, ....,x, € F \{0} be pairwise
distinct and let y;, ...,y, € [, and m € [
There exists exactly one f € &, such

that f(x,) =y Vi € [1]. :

Corollary 2:let x;, ..., x, € [ )\ {0} be pairwise
distinct and let y,, ..., y, € [,. For every m € [,
1 m

Pr /\f(xz) — Vi :f<_ Lq)p,t,m — — p_t°

i[t] | P tm| 8 Y S R




! Points Leak Nothing About f(0)

Corollary 2:let x;, ..., x;, € [ )\ {0} be pairwise
distinct and let y,, ..., y, € [,. For every m € [,

1
Pr /\f(xz) — Vi :f<_ Lq)p,t,m — ‘@ ‘ — p_t°
1E[1] p.t,m

Corollary 3:let x, ..., x, € [Fp\{O} be pairwise
distinct. For every m € [,

(fGD: o) 2 f = Poprn) = O e3) <

or in other words, the distribution of
Vi» ---» Yy € [, is independent of .

Note: this is like Shannon Secrecy.



Finally, (7 + 1)-of-r Shamir Sharing over [,

e Let) <17 < n < p where 1 is the corruption limit, 7
is the number of parties, p is a prime, and let /Z = [,

e Share,, (m):

1. Sample [ < & unitormly (by sampling -
the coefficients of / uniformly from ).

2. Output (s, ...,5,) where s. = (i) Vi € [n].

. Reconp,n,t((zl, A (sl-l, s Sim)):

1. Interpolate f(0) € F.

\_ How to do this,

i general?



Interpolation: the Problem

. Given: pairwise distinct (i}, ..., 7, ) € F'

t+1
and (Sl-l, ...,Sim) e
e Find:f(x)=m+ a,-x+ ... a-xsatisfying:
o . o R ".K.®‘ ““"‘
f(ll) — m + al ¢ ll + oooat. l]l: — Sll “,“ ----------- K'.‘“"
: 'NQ--"“‘
fG)=m+a;-i,+...q,- 15 =S
oL | .
f(lt+l) = m + al ’ lt-l—l + “’at * lt-l—l —_ Sit+1 m SHl 83 Se

A 4 | VI v | | | VI |

This is a linear system with 7 + | equations and
t + 1 variables, so... (Example for t=2)



Interpolation: the Problem

. Given: pairwise distinct (i}, ..., 7, ) € F'

t+1
and (Sl-l, ...,Sim) e
e Find:f(x)=m+ a,-x+ ... a-x"satisfying:
. xCD o
1 L l{ " 1 ‘ o i
al S2 »® 1
. ot ¢
i | | g S
m S| 83 Se,

K_Tk&s s called a Y v ]

vand nde Makri
andermonde Makrix (Example for b=2)

1t has determinant H (1, — ij) + 0, therefore...

0<j<k<r+1



Interpolation: the Problem

. Given: pairwise distinct (i}, ..., 7, ) € F'

t+1
and (Sl-l, ...,Sim) e
e Find:f(x)=m+ a,-x+ ... a-x"satisfying:
1 7P
m 1 ] . ll Sl T et »@®
A 1 1 A . 7@
1 . . . . \) ‘@
: . y :
a, Loy | s,
j m S| 53 Se,

.o ik is always tnvertible. T

(Example for t=2)
Let’s turn this into an interpolation algorithm for

directly recovering any point on the polynomial!
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