
CS4501 Cryptographic Protocols
Lecture 5: Secret Sharing, , 𝔾 𝔽

https://jackdoerner.net/teaching/#2026/Spring/CS4501

Protecting Secrets
The guarantee provided by encryption is a strong one: it ensures that a
corrupted party who knows the ciphertext cannot recover the plaintext.

For now, this is because the ciphertext can decrypt to any plaintext, but
later in the semester we will show that this can be true even if the ciphertext
can only be decrypted to exactly one plaintext (i.e. if the person who knows
the ciphertext has total information about the message).

But ultimately, the security encryption relies on keeping a key secret.

Protecting Secrets
Suppose that we are trying to securely compute (for example)

 where . First we need to compute
a , but this is neither an input nor an output. It can’t be revealed
to anybody. If it’s encrypted, who will keep the secret key?
What if we had a way to lock up the data with many keys?
Challenge: we need to make sure that the data can't be unlocked unless
at least one honest party participates.
We also need to make sure that data can be unlocked when the honest
parties agree that it should be, even if corrupted parties refuse to participate.
(e.g. so that outputs can be revealed)

f(x1, x2, x3) = (y, y, y) y = (x1 + x2) ⋅ x3
x1 + x2

A Simple Solution
Suppose we have three parties, and we know at most one is corrupted (but not which).
Any two should be able to reveal the secret, but one by itself should not be able to.
We can imagine locking the data in a box. For every party , there must be some lock
for which does not have a key, but the others (collectively) do.

Pi
Pi

A Simple Solution
Suppose we have three parties, and we know at most one is corrupted (but not which).
Any two should be able to reveal the secret, but one by itself should not be able to.
We can imagine locking the data in a box. For every party , there must be some lock
for which does not have a key, but the others (collectively) do.

Pi
Pi

A Simple Solution
Suppose we have three parties, and we know at most one is corrupted (but not which).
Any two should be able to reveal the secret, but one by itself should not be able to.
We can imagine locking the data in a box. For every party , there must be some lock
for which does not have a key, but the others (collectively) do.

Pi
Pi

A Simple Solution
Suppose we have three parties, and we know at most one is corrupted (but not which).
Any two should be able to reveal the secret, but one by itself should not be able to.
We can imagine locking the data in a box. For every party , there must be some lock
for which does not have a key, but the others (collectively) do.

Pi
Pi

Notice they can still open
all of the locks if they work
together

Secret Sharing

Somebody I know was recently asked to
prove this “not hard minimal solution” on

a quant trading firm hiring exam.

In 2002 Adi Shamir got a Turing award
in part for proving that there is a better

way if your secrets are numbers.

(Turing awards are very practical)

General Secret Sharing
The Setting:

• A dealer holds a secret .
• wants to share among n parties.
• can communicate with each over a

private channel to send share .
• Authorized subsets of parties can

reconstruct from their shares.
 The collection of all authorized sets is
 called the access structure, denoted .
• Unauthorized subsets cannot learn any

new information about .
 The collection of all unauthorized sets is
 called the forbidden structure.

D m ∈ ℳ
D m
D Pi

si

m

Γ

m

s1 s2 s3 s4
s5

s1 s2 s3

m

m

General Secret Sharing
For example:

• with parties

• The following subsets can reconstruct:

n = 5 𝒫 = {P1, P2, P3, P4, P5}

X1 = {P1, P2, P3} s1 s2 s3 s4
s5

m

General Secret Sharing
For example:

• with parties

• The following subsets can reconstruct:

n = 5 𝒫 = {P1, P2, P3, P4, P5}

X1 = {P1, P2, P3}
X2 = {P1, P2, P4}

s1 s2 s3 s4
s5

m

General Secret Sharing
For example:

• with parties

• The following subsets can reconstruct:

n = 5 𝒫 = {P1, P2, P3, P4, P5}

X1 = {P1, P2, P3}
X2 = {P1, P2, P4}
X3 = {P2, P5}

s1 s2 s3 s4
s5

• The access structure is:
 Γ = {X ⊆ 𝒫 : ∃i ∈ [3] s.t. Xi ⊆ X}

m

General Secret Sharing
For example:

• with parties

• The following subsets can reconstruct:

n = 5 𝒫 = {P1, P2, P3, P4, P5}

X1 = {P1, P2, P3}
X2 = {P1, P2, P4}
X3 = {P2, P5}

s1 s2 s3 s4
s5

• The access structure is:
 Γ = {X ⊆ 𝒫 : ∃i ∈ [3] s.t. Xi ⊆ X}

For example, {P1, P2, P5} ∈ Γ

m

General Secret Sharing
For example:

• with parties

• The following subsets can reconstruct:

n = 5 𝒫 = {P1, P2, P3, P4, P5}

X1 = {P1, P2, P3}
X2 = {P1, P2, P4}
X3 = {P2, P5}

s1 s2 s3 s4
s5

m

• The access structure is:
 Γ = {X ⊆ 𝒫 : ∃i ∈ [3] s.t. Xi ⊆ X}

For example, {P1, P2, P5} ∈ Γ

• The forbidden structure is .
 For example,

{X ⊆ 𝒫}∖Γ
{P4, P5} ∉ Γ

This means set subtraction!

General Secret Sharing

Definition 1. Syntax for Secret Sharing
A secret-sharing scheme for access structure over with message
space is a pair of algorithms such that:
• samples shares given a secret .

• outputs the secret if and only if it is
given a set of shares such that .

Γ 𝒫 = {P1, …, Pn}
ℳ (𝖲𝗁𝖺𝗋𝖾, 𝖱𝖾𝖼𝗈𝗇)

(s1, …, sn) ← 𝖲𝗁𝖺𝗋𝖾(m) n m ∈ ℳ
m := 𝖱𝖾𝖼𝗈𝗇((i1, …, ik), (si1, …, sik)) m

{si1, …, sik} {Pi1, …, Pik} ∈ Γ

Definition 2. Correctness for Secret Sharing
, if , then such that it

it holds that .
∀m ∈ ℳ (s1, …, sn) ← 𝖲𝗁𝖺𝗋𝖾(m) ∀{i1, …, ik} ⊆ [n] {Pi1, …, Pik} ∈ Γ

m = 𝖱𝖾𝖼𝗈𝗇((i1, …, ik), (si1, …, sik))

General Secret Sharing

Definition 2. Correctness for Secret Sharing
, if , then such that it

it holds that .
∀m ∈ ℳ (s1, …, sn) ← 𝖲𝗁𝖺𝗋𝖾(m) ∀{i1, …, ik} ⊆ [n] {Pi1, …, Pik} ∈ Γ

m = 𝖱𝖾𝖼𝗈𝗇((i1, …, ik), (si1, …, sik))

Note: this looks like the perfect secrecy definition for encryption! Alternatively
we could write a privacy definition that looks like Shannon secrecy, and prove that
it is implied by Definition 3, just as we did for encryption.

Definition 3. Perfect Privacy for Secret Sharing
, such that it

it holds that .
∀m1, m2 ∈ ℳ ∀{i1, …, ik} ⊆ [n] {Pi1, …, Pik} ∉ Γ

{si1, …, sik : (s1, …, sn) ← 𝖲𝗁𝖺𝗋𝖾(m1)} ≡ {si1, …, sik : (s1, …, sn) ← 𝖲𝗁𝖺𝗋𝖾(m2)}

General Secret Sharing

Definition 3. Perfect Privacy for Secret Sharing
, such that it

it holds that .
∀m1, m2 ∈ ℳ ∀{i1, …, ik} ⊆ [n] {Pi1, …, Pik} ∉ Γ

{si1, …, sik : (s1, …, sn) ← 𝖲𝗁𝖺𝗋𝖾(m1)} ≡ {si1, …, sik : (s1, …, sn) ← 𝖲𝗁𝖺𝗋𝖾(m2)}
Note: this looks like the perfect secrecy definition for encryption! Alternatively
we could write a privacy definition that looks like Shannon secrecy, and prove that
it is implied by Definition 3, just as we did for encryption.

Note: Whereas we don’t often explicitly use perfectly secret encryption schemes
in practice anymore, the most commonly-used secret sharing schemes are indeed
perfectly private!

The Simplest Case: -of- XOR sharingn n
• Consider for some .
• :

1. Sample .
2. Compute .
3. Output .

• :
1. Output .

Note: if such that does not know ,
then does not have any information about .
Note: . So collectively we store bits.
Question: Can we think of OTP as a special case of this?

ℳ = {0,1}ℓ ℓ ∈ ℕ
𝖲𝗁𝖺𝗋𝖾(m)

s1, …, sn−1 ← {0,1}ℓ

sn := m ⊕ s1 ⊕ … ⊕ sn−1

(s1, …, sn)
𝖱𝖾𝖼𝗈𝗇(s1, …, sn)

s1 ⊕ … ⊕ sn

∃i ∈ [n] 𝒜 si
𝒜 m

∀i ∈ [n], |si | = |m | n ⋅ ℓ

Similarly: -of- additive sharingn n
• Consider for some .
• :

1. Sample .

2. Compute .

3. Output .
• :

1. Output .

Note: those of you who have taken algebra
might notice these are really two special cases
of the same general scheme…
Note: This is a threshold scheme for !

ℳ = ℤℓ ℓ ∈ ℕ
𝖲𝗁𝖺𝗋𝖾(m)

s1, …, sn−1 ← ℤℓ

sn := m − ∑
n−1

i=1
si mod ℓ

(s1, …, sn)
𝖱𝖾𝖼𝗈𝗇(s1, …, sn)

∑
n

i=1
si mod ℓ

t = n − 1

Slightly More General: Thresholds
Definition 4. Threshold Secret Sharing
A -of- threshold secret sharing (TSS) scheme is any secret sharing scheme
where the access structure comprises all subsets of parties of size greater than .
In other words, a secret sharing scheme with .

(t + 1) n
t

Γ = {X ⊆ 𝒫 : |X | > t}

Our example earlier was a -of- TSS scheme.
Can we generalize it?

2 3

-of- from -of-(t + 1) n (t + 1) (t + 1)
Naïvely, we can envision the following solution to achieve an arbitrary
threshold among parties. Let be the maximum number of corruptions.

• For every size- subset of the parties, the Dealer secret-shares to the
parties in that subset using a -of- secret sharing scheme.

• By the correctness of the -of- secret-sharing scheme, every set
of parties can reconstruct. So our new scheme is also correct.

• By the privacy of the -of- secret-sharing scheme, and the fact
that all of the sharings distributed by the dealer are completely independent,
the entire set of shares known to any set of parties has a distribution that is
independent of the message that is shared. So our new scheme is private.

Bad News: there are subsets. When we have .

Can we do better?

n t
(t + 1) s

(t + 1) (t + 1)
(t + 1) (t + 1)

t + 1
(t + 1) (t + 1)

t

(n
t + 1) t ≈ n/2 (n

t + 1) ∈ Ω (2n

n)

• Consider

• :
1. Find a random line that intersects the y-axis

at . I.e. let where is random.
2. Output where

and .
• :

1. Compute .

2. Output .
Correctness: follows from high-school geometry :)
Privacy Intuition: for any and any there is a line going through and .

ℳ = ℕ
𝖲𝗁𝖺𝗋𝖾(m)

m f(x) = a ⋅ x + m a
(s1, s2) s1 = f(1) = a + m

s2 = f(2) = 2a + m
𝖱𝖾𝖼𝗈𝗇(s1, s2)

a :=
s2 − s1

2 − 1
= s2 − s1

s1 − a

s2 m (2,s2) (0,m)

2-of-2 from Simple 2D Geometry

m s1 s2

• Consider

• :
1. Find a random line that intersects the y-axis

at . I.e. let where is random.

ℳ = ℕ
𝖲𝗁𝖺𝗋𝖾(m)

m f(x) = a ⋅ x + m a

2-of- from Simple 2D Geometryn

m s1 s2

2. Output where

• :

1. Compute .

2. Output .

Every pair of shares completely determines .
Every single share is independent of .

(s1, …, sn) si = f(i) = i ⋅ a + m

𝖱𝖾𝖼𝗈𝗇((i, j), (si, sj))

a :=
sj − si

j − i
si − i ⋅ a

m
m

s3 s4 s5

We want to make it so that 3 points are needed to reconstruct…

Claim: 3 points define a unique polynomial of degree
Proof:

≤ 2

3-of- from Simple 2D Geometryn

• Let be points such that .
• Suppose that both and

pass through all three points. That is, .
• Let . Note that .
• We also know that .
• This gives us two possible cases:

1.
2. but has 3 roots, which is a contradiction!

(x1, y1), (x2, y2), (x3, y3) x1 ≠ x2 ≠ x3

f(x) = a1 ⋅ x2 + b1 ⋅ x + c1 g(x) = a2 ⋅ x2 + b2 ⋅ x + c2
f(xi) = g(xi) = yi ∀i ∈ [3]

h(x) = f(x) − g(x) deg(f) ≤ 2 ∧ deg(g) ≤ 2 ⟹ deg(h) ≤ 2
h(xi) = f(xi) − g(xi) = 0 ∀i ∈ [3]

h(x) = 0 ∀x ⟹ f(x) = g(x) ∀x
0 < deg(h) ≤ 2 h ∎

We want to make it so that points are needed to reconstruct…

Theorem 1: points define a unique polynomial of degree
Proof:

t + 1
t + 1 ≤ t

-of- from Simple 2D Geometry(t + 1) n

• Let be points such that .

• Suppose that both and are polynomials of degree that
pass through all points. That is, .

• Let . Note that .
• We also know that .
• This gives us two possible cases:

1.
2. but has roots, which is a contradiction!

(xi, yi) ∀i ∈ [t + 1] xi ≠ xj ∀i, j ∈ [t + 1]

f(x) g(x) ≤ t
t + 1 f(xi) = g(xi) = yi ∀i ∈ []

h(x) = f(x) − g(x) deg(f) ≤ ∧ deg(g) ≤ ⟹ deg(h) ≤
h(xi) = f(xi) − g(xi) = 0 ∀i ∈ []

h(x) = 0 ∀x ⟹ f(x) = g(x) ∀x
0 < deg(h) ≤ h t + 1 ∎

t + 1
t t t

t + 1

t

• Consider

• :
1. Find a random parabola that intersects the

y-axis at .
2. Output where .

• :

1. Recover the coefficients of .
2. Output .

Correctness: from uniqueness of parabola.
Privacy Intuition: for any and any there is a (unique) parabola going
 through , , and .

ℳ = ℕ
𝖲𝗁𝖺𝗋𝖾(m)

f
f(0) = m

(s1, …, sn) si = f(i) ∀i ∈ [n]
𝖱𝖾𝖼𝗈𝗇((i, j, k), (si, sj, sk))

f
f(0)

si, sj m
(i, si) (j, sj) (0,m)

3-of- from Simple 2D Geometryn

m s1 s2 s3 s4 s5 s6

we call this
“interpolation”

• Consider

• :
1. Find a random polynomial of

degree that intersects the y-axis at .
2. Output where .

• :

1. Interpolate .

Correctness: from uniqueness of degree- polynomial.
Privacy Intuition: for any collection of points and any there is a (unique)
 degree- polynomial going through those points and .

ℳ = ℕ
𝖲𝗁𝖺𝗋𝖾(m)

f
t f(0) = m
(s1, …, sn) si = f(i) ∀i ∈ [n]

𝖱𝖾𝖼𝗈𝗇((i1, …, i), (si1, …, si))
f(0)

t
t m

t (0,m)

Finally, -of- Shamir Sharing(t + 1) n

m s1 s2 s3 s4 s5 s6

t + 1 t + 1

There is one huge problem! Can you see it?

m s1 s2 s3 s4 s5 s6

• How can we sample a polynomial “randomly?”

• Uniform distributions are not well-defined on
countably infinite sets such as and !

• Suppose that set is countably infinite. If the
probability of every specific element being
sampled is exactly 0, then

and if the probability of every specific element
being sampled is nonzero, then

In both cases, we contradict the law of total probability.

ℕ ℤ
S

∑
s∈S

Pr[x = s : x ← S] = 0

∑
s∈S

Pr[x = s : x ← S] = ∞

• We need to work over a finite domain.

• We need to have at least distinct x-coordinates.
Can we work modulo ?

• No! Suppose again that we want a 2-of-3 scheme.
Here is the reconstruction algorithm again. Remember,
we’re working in . How do we define division modulo 4?

• Suppose and .
Real number division won’t work because ½ .

• What if we define division as “the inverse of multiplication
modulo 4.” We call this modular multiplicative inverse.
Is there any number in that you can multiply by 2 to get ?

n + 1
n + 1

ℤ4

j − i = 2 sj − si = 1
∉ ℤ4

ℤ4 1

There is one huge problem! Can you see it?

(0 ⋅ 2) mod 4 = 0
(1 ⋅ 2) mod 4 = 2
(2 ⋅ 2) mod 4 = 0
(3 ⋅ 2) mod 4 = 2

It’s time to learn about algebraic structures!
Anyone who has taken MATH 3354 or MATH 4652 can take a nap now.

I will be simplifying heavily in the next part.

It would help us to understand what kind of finite domains support interpolation.

Abstract Algebra
• Think about your favorite number systems (i.e. sets of numbers):

• We say that a set is closed under some binary operator if .

• , and are all closed under the operations and .

• Notice, however, that inverses aren’t guaranteed by closure. does not have additive inverses!
 doesn’t have multiplicative inverses! So some of these behave slightly differently…

• We can add and multiply other kinds of things: for example, matrices, real-valued functions,
polynomials. Are they closed? Do they have inverses? Unlike the others, matrix multiplication
isn’t commutative! So we have another slightly different kind of thing…

• We can also define other kinds of closed sets with binary operators.
Consider the set of 2D points on this elliptic curve:

• If we choose any two points with distinct x-coordinates, and
draw a line between them, that line touches a third point.

• It turns out the set of points on an elliptic curve is closed under
this operation, and inverses exist too! It behaves just like addition.

ℕ, ℤ, ℝ, ℚ, ℂ
S ⋆ x ∈ S ∧ y ∈ S ⟹ x ⋆ y ∈ S

ℕ, ℤ, ℝ, ℚ, ℂ ℤ4 + ⋅
ℕ

ℤ4

We can Categorize by Axioms
Let be a set and be a binary operation such that is closed under .
Definition 5: is a group if and only if all of the following axioms hold:
1. Associativity: .
2. Identity: there exists an identity element such that we have .
3. Inverses: such that .

Definition 6: is a commutative (a.k.a. abelian) group if it is a group, and:
4. Commutativity: we have .

Definition 7: the order of is the size of .

𝔾 ⋆ : 𝔾 × 𝔾 → 𝔾 𝔾 ⋆
(𝔾, ⋆)

∀a, b, c ∈ 𝔾, a ⋆ (b ⋆ c) = (a ⋆ b) ⋆ c
i ∀a ∈ 𝔾 i ⋆ a = a ⋆ i = a

∀a ∈ 𝔾 ∃b ∈ 𝔾 a ⋆ b = i

(𝔾, ⋆)
∀a, b ∈ 𝔾 a ⋆ b = b ⋆ a

(𝔾, ⋆) 𝔾

We can Categorize by Axioms
Let be a set and be a binary operation such that is closed under .
Definition 5: is a group if and only if all of the following axioms hold:
1. Associativity: .
2. Identity: there exists an identity element such that we have .
3. Inverses: such that .

Definition 6: is a commutative (a.k.a. abelian) group if it is a group, and:
4. Commutativity: we have

𝔾 ⋆ : 𝔾 × 𝔾 → 𝔾 𝔾 ⋆
(𝔾, ⋆)

∀a, b, c ∈ 𝔾, a ⋆ (b ⋆ c) = (a ⋆ b) ⋆ c
i ∀a ∈ 𝔾 i ⋆ a = a ⋆ i = a

∀a ∈ 𝔾 ∃b ∈ 𝔾 a ⋆ b = i

(𝔾, ⋆)
∀a, b ∈ 𝔾 a ⋆ b = b ⋆ a

Question: is a group?
 is a group?
 is a group?
 is a group, where ?

(ℤ, +)
(ℤ, ⋅)
(ℝ, ⋅)
(ℝ*, ⋅) ℝ* = ℝ∖{0}

Yes.
No. 2 has no inverse.
No. 0 has no inverse.
Yes.

We can Categorize by Axioms
Let be a set and be a binary operation such that is closed under .
Definition 5: is a group if and only if all of the following axioms hold:
1. Associativity: .
2. Identity: there exists an identity element such that we have .
3. Inverses: such that .

Definition 6: is a commutative (a.k.a. abelian) group if it is a group, and:
4. Commutativity: we have

𝔾 ⋆ : 𝔾 × 𝔾 → 𝔾 𝔾 ⋆
(𝔾, ⋆)

∀a, b, c ∈ 𝔾, a ⋆ (b ⋆ c) = (a ⋆ b) ⋆ c
i ∀a ∈ 𝔾 i ⋆ a = a ⋆ i = a

∀a ∈ 𝔾 ∃b ∈ 𝔾 a ⋆ b = i

(𝔾, ⋆)
∀a, b ∈ 𝔾 a ⋆ b = b ⋆ a

Question: is a group, where
 is the set of all matrices over ?
 is a group?
 is a group,
 where ?

(Mn×m(ℝ), +) Mn×m(ℝ)
n × m ℝ

(Mn×n(ℝ), ⋅)
(GLn(ℝ), ⋅)

GLn(ℝ) = {x ∈ Mn×n(ℝ) : det(x) ≠ 0}

Yes.

No. Some elements are non-invertible.
Yes. But not commutative.

We can Categorize by Axioms
Let be a set and be a binary operation such that is closed under .
Definition 5: is a group if and only if all of the following axioms hold:
1. Associativity: .
2. Identity: there exists an identity element such that we have .
3. Inverses: such that .

Definition 6: is a commutative (a.k.a. abelian) group if it is a group, and:
4. Commutativity: we have

𝔾 ⋆ : 𝔾 × 𝔾 → 𝔾 𝔾 ⋆
(𝔾, ⋆)

∀a, b, c ∈ 𝔾, a ⋆ (b ⋆ c) = (a ⋆ b) ⋆ c
i ∀a ∈ 𝔾 i ⋆ a = a ⋆ i = a

∀a ∈ 𝔾 ∃b ∈ 𝔾 a ⋆ b = i

(𝔾, ⋆)
∀a, b ∈ 𝔾 a ⋆ b = b ⋆ a

Out of Scope: we can also build groups from polynomials.
 we can build groups from geometry and topology.
 the set of bijective functions is a group under the composition operator .∘

If a mathematical statement relies only on group axioms, it holds for any group.

Finite Groups (by Example)

Yes.

a a
−a

Consider where is interpreted as addition modulo .
Closure: holds because the range of is .
Associativity, Identity, Commutativity: the same as integer on . Identity element is 0.
Inverses: Because , the additive inverse of 0 is itself.
 Notice that . The additive inverse of is a number
 such that . Does always exist?
 We will refer to the additive inverse of as “ ”. Note that maybe !
You can imagine a finite group working like a clock:

(ℤm, +) + m
mod m [0,m − 1] = ℤm

+ ℤ
0 + 0 = 0

m mod m = 0 a ∈ ℤm b ∈ ℤm
(a + b) mod m = m mod m = 0 b ∈ ℤm

a −a |a | ≠ | − a |

Let’s Look Again at What We Need

2. Additive inverses

1. Structure with addition,
 multiplication, finite order.

Let’s Look Again at What We Need

2. Additive inverses

Since we require distinct
x-coordinates, to reconstruct,
we don’t need a multiplicative
inverse for .0

3. Multiplicative inverses

1. Structure with addition,
 multiplication, finite order.

We can Categorize by Axioms
Let be a set and and be binary operations under which is closed.
Definition 8: is a field if and only if all of the following conditions hold:
1. is a commutative group. Let the additive identity be denoted .
2. is a commutative group. Let the multiplicative identity be denoted .
3. Distributivity: we have .

𝔽 + : 𝔽 × 𝔽 → 𝔽 ⋅ : 𝔽 × 𝔽 → 𝔽 𝔽
(𝔽, + , ⋅)

(𝔽, +) 0
(𝔽∖{0}, ⋅) 1

∀a, b, c ∈ 𝔽 a ⋅ (b + c) = a ⋅ b + a ⋅ c

Question: is a field?
 is a field?
 is a field (ops are modular)?
 is a field (ops are modular)?

(ℤ, + , ⋅)
(ℝ, + , ⋅)
(ℤ4, + , ⋅)
(ℤ5, + , ⋅)

No. 2 has no multiplicative inverse.
Yes.
No. 2 has no multiplicative inverse.
Yes.
(1 ⋅ 1) mod 5 = 1
(2 ⋅ 3) mod 5 = 6 mod 5 = 1
(3 ⋅ 2) mod 5 = 6 mod 5 = 1
(4 ⋅ 4) mod 5 = 16 mod 5 = 1

Next Time: When is a Field?ℤm

https://jackdoerner.net/teaching/#2026/Spring/CS4501

CS4501 Cryptographic Protocols
Lecture 5: Secret Sharing, , 𝔾 𝔽

