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https://jackdoerner.net/teaching/#2026/Spring/CS4501



Protecting Secrets

The guarantee provided by encryption is a strong one: it ensures that a
corrupted party who knows the ciphertext cannot recover the plaintext.

For now, this is because the ciphertext can decrypt to any plaintext, but
later in the semester we will show that this can be true even if the ciphertext

can only be decrypted to exactly one plaintext (i.e. if the person who knows
the ciphertext has total information about the message).

But ultimately, the security encryption relies on keeping a key secret.



Protecting Secrets

Suppose that we are trying to securely compute (for example)
f(xy,%,x3) = (y,v,y) where y = (x; + x,) - x;. First we need to compute
a x; + x,, but this is neither an input nor an output. It can’t be revealed
to anybody. It it’s encrypted, who will keep the secret key?

What if we had a way to lock up the data with many keys?

Challenge: we need to make sure that the data can't be unlocked unless
at least one honest party participates.

We also need to make sure that data can be unlocked when the honest
parties agree that it should be, even if corrupted parties refuse to participate.
(e.g. so that outputs can be revealed)



A Simple Solution

Suppose we have three parties, and we know at most one is corrupted (but not which).
Any two should be able to reveal the secret, but one by itself should not be able to.

We can imagine locking the data in a box. For every party P, there must be some lock
for which P; does not have a key, but the others (collectively) do.
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A Simple Solution

Suppose we have three parties, and we know at most one is corrupted (but not which).
Any two should be able to reveal the secret, but one by itself should not be able to.

We can imagine locking the data in a box. For every party P, there must be some lock
for which P; does not have a key, but the others (collectively) do.

Notice Eh@.v cawn skill open
all of the locks i they work
together




Secret Sharing

1. Introduction . . .

In 2002 Adi Shamir got a Turing award

In [4], Liu considers the following problem: in part for proving that there is a better
Eleven scientists are working on a secret project. They wish to lock Way if your Secrets are numberS.

up the documents in a cabinet so that the cabinet can be opened if
and only if six or more of the scientists are present. What is the
smallest number of locks needed? What is the smallest number of
keys to the locks each scientist must carry?
It is not hard to show that the minimal solution uses 462
locks and 252 keys per scientist. These numbers are
clearly impractical, and they become exponentially
worse when the number of scientists increases.
In this paper we generalize the problem to one in

which the secret is some data D (e.g., the safe combina-

Somebody I know was recently asked to

prove this not hard mmm.qa.l solution” on (Turing awards are very practical)
a quant trading firm hiring exam.



General Secret Sharing

The Setting:

A dealer D holds a secret m € /.

D wants to share m among n parties.

D can communicate with each P; over a
private channel to send share s..

Authorized subsets of parties can
reconstruct m from their shares.

The collection of all authorized sets is
called the access structure, denoted I

Unauthorized subsets cannot learn any
new information about m.

The collection of all unauthorized sets is
called the forbidden structure.




General Secret Sharing

For example: =
o n =5 with parties & = (P, P,, Ps, P,, Ps} %)

e The following subsets can reconstruct:
Xl — {P19P29P3}
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General Secret Sharing

For example:
o n =5 with parties &* = {P,, P,, P;, P,, Ps}
e The following subsets can reconstruct:

X, =1{P,, P,, Py}

X, = {P;,P,, P,}

X3 = 1P, Ps}

e The access structure is:
['={XCPP:diel3]st X CX}
For example, { P, P,,Ps} €T

(\This means set subbtraction!
o The forbidden structure is {X C 2 }\I".

For example, {P,, P} & I



General Secret Sharing

Definition 1. Syntax for Secret Sharing

A secret-sharing scheme for access structure [ over & = { P, ..., P, } with message
space .Z/ is a pair of algorithms (Share, Recon) such that:

e (5,...,5,) < Share(m) samples n shares given a secret m € /.

o M = Recon((il, ) (Sil, ey S )) outputs the secret m if and only if it is
given a set of shares {Sil, .. } such that {P el lk} el.

Definition 2. Correctness for Secret Sharing

Vme M, it (s, ...,s,) < Share(m), then V{i,,...,i,} C [n] such that it {P

L P} el
it holds that m = Recon((il, ) (Sil, e Sl-k)).



General Secret Sharing

Definition 2. Correctness for Secret Sharing

Vme M, it (s, ...,s,) < Share(m), then V{i,,...,i,} C [n] such that it {Pl-l, ...,Pl-k} el
it holds that m = Recon((il, ) (sil, el sik)).

Definition 3. Perfect Privacy for Secret Sharing

Vm,my € M, Vi ....i,} C [n]suchthatit {P,,.... P, } ¢ T

it holds that {Sil, by ) (81 .vnsS,) Share(ml)} {S S; L (S)y.enyS,) Share(mz)}

k-

Note: this looks like the perfect secrecy definition for encryption! Alternatively
we could write a privacy definition that looks like Shannon secrecy, and prove that
it is implied by Definition 3, just as we did for encryption.



General Secret Sharing

Definition 3. Perfect Privacy for Secret Sharing

Vm,my € M, Vi, ....;;} C[n] suchthatit {P,,...,P, } €T
it holds that {Sil, R e Share(ml)} = {Sil, R RN Share(mz)}.

Note: this looks like the perfect secrecy definition for encryption! Alternatively
we could write a privacy definition that looks like Shannon secrecy, and prove that
it is implied by Definition 3, just as we did for encryption.

Note: Whereas we don't often explicitly use perfectly secret encryption schemes
in practice anymore, the most commonly-used secret sharing schemes are indeed

perfectly private!



The Simplest Case: n-of-n XOR sharing

o Consider .Z = {0,1}? for some Z € N.
e Share(m):
1. Sample s, ....,s,_; < {0,1}°.
2. Computes, ;=m@s, D...Ds,_,.
3. Output (s, ...,5,).
e Recon(sy,...,s,):
1. Outputs, @ ... Ds,.

Note: if i € [n] such that &/ does not know s,
then &/ does not have any information about .

Note: Vi € [n], |s;| = |m|. So collectively we store n - £ bits.

Question: Can we think of OTP as a special case of this?



Similarly: n-of-n additive sharing

o Consider / = Z,for some ¢ € N.
e Share(m):

1. Samples,,....s, , < Z,.
2. Comput Y s mod £
. Compute s, := m — s: mod 7.
pute s, g O
3. Output (s, ...,5,).
e Recon(sy,...,s,):

1. Output Zé_lsi mod 7.

Note: those of you who have taken algebra
might notice these are really two special cases
of the same general scheme...

Note: This is a threshold scheme forr=n — 1!



Slightly More General: Thresholds

Definition 4. Threshold Secret Sharing

A (1 + 1)-of-n threshold secret sharing (TSS) scheme is any secret sharing scheme
where the access structure comprises all subsets of parties of size greater than .
In other words, a secret sharing scheme with[' = {X C & : | X| > 1}.

Our example earlier was a 2-of-3 TSS scheme.

Can we generalize it?




(t + 1)-of-n from (¢t + 1)-of-(r + 1)

Naively, we can envision the following solution to achieve an arbitrary
threshold among n parties. Let  be the maximum number of corruptions.

o For every size-(7 + 1) subset of the parties, the Dealer secret-shares s to the
parties in that subset using a (7 + 1)-of-(7 + 1) secret sharing scheme.

o By the correctness of the (7 + 1)-of-( + 1) secret-sharing scheme, every set
of 7 + | parties can reconstruct. So our new scheme is also correct.

o By the privacy of the (7 + 1)-of-(7 + 1) secret-sharing scheme, and the fact
that all of the sharings distributed by the dealer are completely independent,
the entire set of shares known to any set of 7 parties has a distribution that is
independent of the message that is shared. So our new scheme is private.

n

271
Bad News: there are subsets. When ¢ ~ n/2 we have . e () .
r+ 1 r+ 1 \/E

Can we do better?




2-of-2 from Simple 2D Geometry

e Consider Z = N
e Share(m):

1. Find a random line that intersects the y-axis
at m. Le. let f(x) = a - x + m where a is random.

2. Output (s, 5,) where s, =f(1) =a+m
and s, = f(2) = 2a + m.

e Recon(sy, s,):

S2 _ Sl m 511 92
1. Compute a := > 1 = 5, — .

2. Output 5, — a.
Correctness: follows from high-school geometry :)

Privacy Intuition: for any s, and any m there is a line going through (2,s,) and (0,m).



2-of=n from Simple 2D Geometry

e Consider Z = N
e Share(m):

1. Find a random line that intersects the y-axis
at m. Le. let f(x) = a - x + m where a is random.

2. Output (s;,...,5,) where s, =f(i) =i-a+m

o Recon((i,)), (s, Sj))=

j—i

1. Compute a :=

2. Output s, —1 - a.

Every pair of shares completely determines 1.
Every single share is independent of .



3-of-n from Simple 2D Geometry

We want to make it so that 3 points are needed to reconstruct...
Claim: 3 points define a unique polynomial of degree < 2
Proof: ¢ Let (x,,Vv,), (x5, V5), (X3, v3) be points such that x; # x, # x,.

o Suppose that both f(x) = a, - x>+ b, - x+ ¢, and g(x) = a, - x> + b, - x + ¢,
pass through all three points. That is, f(x;) = g(x) = y. Vi € [3].

e Let i(x) = f(x) — g(x). Note that deg(f) <2 Adeg(g) <2 —> deg(h) < 2.
e We also know that /i(x) = f(x) — g(x) =0 Vi e [3].
e This gives us two possible cases:

1. h(x)=0Vx = f(x) =g(x) Vx

2. 0 < deg(h) <2 but / has 3 roots, which is a contradiction! B



( + 1)-of-n from Simple 2D Geometry

We want to make it so that 7 + | points are needed to reconstruct...
Theorem 1: 7 + | points define a unique polynomial of degree <1
Proof: ¢ Let (x,y) Vi € [t + 1] be points such that x; # x; Vi,j e [t+ 1].

e Suppose that both f(x) and g(x) are polynomials of degree < 7 that
pass through all 7 + | points. That is, f(x) = g(x,) =y, Vi€ [r+ 1].

e Let i(x) = f(x) — g(x). Note that deg(f) < 1 Adeg(g) < t = deg(h) < 1.
e We also know that /i(x) = f(x) —g(x) =0 Vie [r+ 1].
e This gives us two possible cases:

1. h(x)=0Vx = f(x) = g(x) Vx

2. 0 < deg(h) <t buthhasrt+ 1roots, which is a contradiction! B



3-of-n from Simple 2D Geometry

e Consider Z = N
e Share(m):

1. Find a random parabola f that intersects the
y-axis at f(0) = m.

2. Output (s, ...,5,) where 5. = (i) Vi € [n]. .

o Recon((i, ], k), (s, 5, 5)):

we call this
L\ Y . "
LM&Q?F’OLQ&LOM m| | s)| s oss|osaloss| s

2. Output f(0). «—

Correctness: from uniqueness of parabola.

1. Recover the coeflicients of /.

Privacy Intuition: for any s;, 5; and any m there is a (unique) parabola going

through (i, s,), (J, S7); and (0,m).



Finally, (r + 1)-of-n Shamir Sharing

e Consider Z = N
e Share(m):

1. Find a random polynomial f of
degree 7 that intersects the y-axis at f(0) = m.

2. Output (s, ...,5,) where 5. = (i) Vi € [n]. A
o Recon((ip,..ciry 1) (8is s )

1. Interpolate f(0).

Correctness: from uniqueness of degree-7 polynomial.

Privacy Intuition: for any collection of 7 points and any m there is a (unique)
degree-7 polynomial going through those points and (0,m).



There is one huge problem! Can you see it?

o« How can we sample a polynomial “randomly?”

e Uniform distributions are not well-defined on
countably infinite sets such as N and /!

o Suppose that set S is countably infinite. If the
probability of every specific element being
sampled is exactly 0, then

ZPr[x=s:x<—S]=()

sES

and if the probability of every specific element
being sampled is nonzero, then

ZPr[x=s:x<—S]=oo

sES

In both cases, we contradict the law of total probability.




There is one huge problem! Can you see it?

e We need to work over a finite domain.

e We need to have at least n + 1 distinct x-coordinates.
Can we work modulo n + 17?

e No! Suppose again that we want a 2-of-3 scheme. Recon((Z, ), (s;, 5)):
Here is the reconstruction algorithm again. Remember, 5; — 5,
we re working in Z,. How do we define division modulo 47 1. Compute a :=

. o j_i
e Supposej—i=2ands; —s = I. 2. Outputs. —i-a.

Real number division won’t work because 7, & Z,.

o What if we define division as “the inverse of multiplication
modulo 4.” We call this modular multiplicative inverse.
[s there any number in Z, that you can multiply by 2 to get 17 (0-2)mod 4 =0

(1-2)mod 4 =2
(2-2)mod 4 =0
(3-2)mod 4 =2



It would help us to understand what kind of finite domains support interpolation.

It’s time to learn about algebraic structures!

Anyone who has taken MATH 3354 or MATH 4652 can take a nap now.
[ will be simplifying heavily in the next part.



Abstract Algebra

o Think about your favorite number systems (i.e. sets of numbers): N, Z, R, ), C
o We say that a set S is closed under some binary operator x if x e SAye S = xkyes.
e N,Z,R,0Q,C, and Z, are all closed under the operations + and -.

e Notice, however, that inverses aren’t guaranteed by closure. N does not have additive inverses!
Z , doesn’'t have multiplicative inverses! So some of these behave slightly differently...

o We can add and multiply other kinds of things: for example, matrices, real-valued functions,
polynomials. Are they closed? Do they have inverses? Unlike the others, matrix multiplication
isn’'t commutative! So we have another slightly difterent kind of thing...

o We can also define other kinds of closed sets with binary operators.
Consider the set of 2D points on this elliptic curve:

o If we choose any two points with distinct x-coordinates, and
draw a line between them, that line touches a third point.

o It turns out the set of points on an elliptic curve is closed under
this operation, and inverses exist too! It behaves just like addition.




We can Categorize by Axioms

Let G beasetand x : G X (G — (5 be a binary operation such that G is closed under *.
Definition 5: (G, % ) is a group if and only if all of the following axioms hold:

1. Associativity: Va,b,c € GG, a x (b % ¢) = (a x b) * c.

2. Identity: there exists an identity element i such that Va € Gwe havei xa =a xi = a.

3. Inverses: Va € G db € G such thata * b = 1.

Definition 6: (G, % ) is a commutative (a.k.a. abelian) group it it is a group, and:

4. Commutativity: Va,b € G we have a x b = b * a.

Definition 7: the order of (5, % ) is the size of G.



We can Categorize by Axioms

Let G beasetand x : G X (G — (5 be a binary operation such that G is closed under *.
Definition 5: (G, % ) is a group if and only if all of the following axioms hold:

1. Associativity: Va,b,c € GG, a x (b % ¢) = (a x b) * c.

2. Identity: there exists an identity element i such that Va € Gwe havei xa =a xi = a.

3. Inverses: Va € G db € G such thata * b = 1.

Definition 6: (G, % ) is a commutative (a.k.a. abelian) group it it is a group, and:

4. Commutativity: Va,b € Gwe havea x b = b % a

Question: is (Z, + ) a group? Yes.
is (Z,-) agroup? No. 2 has no inverse.
is (R, - ) a group? No. 0 has no inverse.

is (R*, - ) a group, where R* = R\{0}? Yes.



We can Categorize by Axioms

Let G beasetand x : G X (G — (5 be a binary operation such that G is closed under *.
Definition 5: (G, % ) is a group if and only if all of the following axioms hold:

1. Associativity: Va,b,c € GG, a x (b % ¢) = (a x b) * c.

2. Identity: there exists an identity element i such that Va € Gwe havei xa =a xi = a.

3. Inverses: Va € G db € G such thata * b = 1.

Definition 6: (G, % ) is a commutative (a.k.a. abelian) group it it is a group, and:

4. Commutativity: Va,b € Gwe havea x b = b % a

Question: is (M ., (R), + ) a group, where M .. (R) Yes.
is the set of all n X m matrices over R?
is (M ., (R),-) a group? No. Some elements are non-invertible.
is (GL,(R), - ) a group, Yes. But not commutative.

where GL (R) = {xe M . (R) : det(x) #0}7?



We can Categorize by Axioms

Let G beasetand x : G X (G — (5 be a binary operation such that G is closed under *.
Definition 5: (G, % ) is a group if and only if all of the following axioms hold:

1. Associativity: Va,b,c € GG, a x (b % ¢) = (a x b) * c.

2. Identity: there exists an identity element i such that Va € Gwe havei xa =a xi = a.

3. Inverses: Va € G db € G such thata * b = 1.

Definition 6: (G, % ) is a commutative (a.k.a. abelian) group it it is a group, and:

4. Commutativity: Va,b € Gwe havea x b =b x a

Out of Scope: we can also build groups from polynomials.
we can build groups from geometry and topology.
the set of bijective functions is a group under the composition operator .

If a mathematical statement relies only on group axioms, it holds for any group.



Finite Groups (by Example)

Consider (Z,,, + ) where + is interpreted as addition modulo .
Closure: holds because the range of mod m is [0.m — 1] = Z .
Associativity, Identity, Commutativity: the same as integer + on Z. Identity element is 0.

Inverses: Because 0 + 0 = 0, the additive inverse of 0 is itselt.
Notice that m mod m = 0. The additive inverse of ¢ € Z, is a number b € Z,,
such that (¢ + ) mod m = m mod m = 0. Does b € Z,, always exist? Yes.

We will refer to the additive inverse of a as "—a”. Note that maybe |a| # | — a|!

You can imagine a finite group working like a clock:




Let’s Look Again at What We Need

1. Structure with addition,

Recon((, ), (s;, Sj))3 muiﬁipiwaﬁom finite order.
1. Compute a := ] — 2. Additive hverses
] — 1 (../

2. Output s, — 1 - a.

T TT—— S ——



Let’s Look Again at What We Need

o 1. Structure with addition,
Recon((z, /), (s;, Sj))3 muiﬁpiwaﬁom finite order.

1. Compute a := ! —, 2. Additive inverses
Jj—1 ™

2. Output s, —i - a. 3. Multiplicative inverses

. — Since we require diskinck
x—=coordinates, ko reconstruck
we dont need a mu&&pliaa&v&
inverse for 0.



We can Categorize by Axioms

Let Fbeasetand + : FX[F — [Fand - : F X [F — [ be binary operations under which [Fis closed.
Definition 8: (I, +, - ) is a field if and only if all of the following conditions hold:

1. ([, + ) is a commutative group. Let the additive identity be denoted 0.
2. (F\{0O}, - ) is a commutative group. Let the multiplicative identity be denoted 1.

3. Distributivity: Va,b,c € F wehavea-(b+c)=a-b+a - c.

Question:is (Z, +, - ) a field? No. 2 has no multiplicative inverse.
is (R, +, - ) a field? Yes.
is (Z,, +, - ) a field (ops are modular)?  No. 2 has no multiplicative inverse.
is (Zs, +, - ) a field (ops are modular)?  Yes.
(1-1)mod5 =1

(2-3)mod5=6mod >S5 =1
3-2)mod5=6mod >S5 =1
(4-4)modS5S=16mod 5 =1



Next Time: When is Z, a Field?
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