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Protecting Secrets
The guarantee provided by encryption is a strong one: it ensures that a 
corrupted party who knows the ciphertext cannot recover the plaintext. 

For now, this is because the ciphertext can decrypt to any plaintext, but 
later in the semester we will show that this can be true even if the ciphertext 
can only be decrypted to exactly one plaintext (i.e. if the person who knows 
the ciphertext has total information about the message). 

But ultimately, the security encryption relies on keeping a key secret.



Protecting Secrets
Suppose that we are trying to securely compute (for example) 

 where . First we need to compute 
a , but this is neither an input nor an output. It can’t be revealed 
to anybody. If it’s encrypted, who will keep the secret key? 
What if we had a way to lock up the data with many keys? 
Challenge: we need to make sure that the data can't be unlocked unless 
at least one honest party participates. 
We also need to make sure that data can be unlocked when the honest 
parties agree that it should be, even if corrupted parties refuse to participate. 
(e.g. so that outputs can be revealed)

f(x1, x2, x3) = (y, y, y) y = (x1 + x2) ⋅ x3
x1 + x2



A Simple Solution
Suppose we have three parties, and we know at most one is corrupted (but not which). 
Any two should be able to reveal the secret, but one by itself should not be able to. 
We can imagine locking the data in a box. For every party , there must be some lock 
for which  does not have a key, but the others (collectively) do.
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A Simple Solution
Suppose we have three parties, and we know at most one is corrupted (but not which). 
Any two should be able to reveal the secret, but one by itself should not be able to. 
We can imagine locking the data in a box. For every party , there must be some lock 
for which  does not have a key, but the others (collectively) do.

Pi
Pi

Notice they can still open 
all of the locks if they work 
together



Secret Sharing

Somebody I know was recently asked to 
prove this “not hard minimal solution” on 

a quant trading firm hiring exam.

In 2002 Adi Shamir got a Turing award 
in part for proving that there is a better 

way if your secrets are numbers.

(Turing awards are very practical)



General Secret Sharing
The Setting: 

• A dealer  holds a secret . 
•  wants to share  among n parties. 
•  can communicate with each  over a 

private channel to send share . 
• Authorized subsets of parties can 

reconstruct  from their shares. 
    The collection of all authorized sets is 
    called the access structure, denoted . 
• Unauthorized subsets cannot learn any 

new information about . 
    The collection of all unauthorized sets is 
    called the forbidden structure.

D m ∈ ℳ
D m
D Pi

si

m

Γ

m

s1 s2 s3 s4
s5

s1 s2 s3

m

m



General Secret Sharing
For example: 

•  with parties  

• The following subsets can reconstruct: 
     

n = 5 𝒫 = {P1, P2, P3, P4, P5}

X1 = {P1, P2, P3} s1 s2 s3 s4
s5
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General Secret Sharing
For example: 

•  with parties  

• The following subsets can reconstruct: 
      
       
     

n = 5 𝒫 = {P1, P2, P3, P4, P5}

X1 = {P1, P2, P3}
X2 = {P1, P2, P4}
X3 = {P2, P5}

s1 s2 s3 s4
s5

• The access structure is: 
     Γ = {X ⊆ 𝒫 : ∃i ∈ [3] s.t. Xi ⊆ X}
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General Secret Sharing
For example: 

•  with parties  

• The following subsets can reconstruct: 
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• The access structure is: 
     Γ = {X ⊆ 𝒫 : ∃i ∈ [3] s.t. Xi ⊆ X}

For example, {P1, P2, P5} ∈ Γ
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General Secret Sharing
For example: 

•  with parties  

• The following subsets can reconstruct: 
      
       
     

n = 5 𝒫 = {P1, P2, P3, P4, P5}

X1 = {P1, P2, P3}
X2 = {P1, P2, P4}
X3 = {P2, P5}

s1 s2 s3 s4
s5

m

• The access structure is: 
     Γ = {X ⊆ 𝒫 : ∃i ∈ [3] s.t. Xi ⊆ X}

For example, {P1, P2, P5} ∈ Γ

• The forbidden structure is . 
    For example, 

{X ⊆ 𝒫}∖Γ
{P4, P5} ∉ Γ

This means set subtraction!



General Secret Sharing

Definition 1. Syntax for Secret Sharing 
A secret-sharing scheme for access structure  over  with message 
space  is a pair of algorithms  such that: 
•  samples  shares given a secret . 

•  outputs the secret  if and only if it is 
given a set of shares  such that .

Γ 𝒫 = {P1, …, Pn}
ℳ (𝖲𝗁𝖺𝗋𝖾, 𝖱𝖾𝖼𝗈𝗇)

(s1, …, sn) ← 𝖲𝗁𝖺𝗋𝖾(m) n m ∈ ℳ
m := 𝖱𝖾𝖼𝗈𝗇((i1, …, ik), (si1, …, sik)) m

{si1, …, sik} {Pi1, …, Pik} ∈ Γ

Definition 2. Correctness for Secret Sharing 
, if , then  such that it  

it holds that .
∀m ∈ ℳ (s1, …, sn) ← 𝖲𝗁𝖺𝗋𝖾(m) ∀{i1, …, ik} ⊆ [n] {Pi1, …, Pik} ∈ Γ

m = 𝖱𝖾𝖼𝗈𝗇((i1, …, ik), (si1, …, sik))



General Secret Sharing

Definition 2. Correctness for Secret Sharing 
, if , then  such that it  

it holds that .
∀m ∈ ℳ (s1, …, sn) ← 𝖲𝗁𝖺𝗋𝖾(m) ∀{i1, …, ik} ⊆ [n] {Pi1, …, Pik} ∈ Γ

m = 𝖱𝖾𝖼𝗈𝗇((i1, …, ik), (si1, …, sik))

Note: this looks like the perfect secrecy definition for encryption! Alternatively 
we could write a privacy definition that looks like Shannon secrecy, and prove that 
it is implied by Definition 3, just as we did for encryption.

Definition 3. Perfect Privacy for Secret Sharing 
,  such that it  

it holds that .
∀m1, m2 ∈ ℳ ∀{i1, …, ik} ⊆ [n] {Pi1, …, Pik} ∉ Γ

{si1, …, sik : (s1, …, sn) ← 𝖲𝗁𝖺𝗋𝖾(m1)} ≡ {si1, …, sik : (s1, …, sn) ← 𝖲𝗁𝖺𝗋𝖾(m2)}



General Secret Sharing

Definition 3. Perfect Privacy for Secret Sharing 
,  such that it  

it holds that .
∀m1, m2 ∈ ℳ ∀{i1, …, ik} ⊆ [n] {Pi1, …, Pik} ∉ Γ

{si1, …, sik : (s1, …, sn) ← 𝖲𝗁𝖺𝗋𝖾(m1)} ≡ {si1, …, sik : (s1, …, sn) ← 𝖲𝗁𝖺𝗋𝖾(m2)}
Note: this looks like the perfect secrecy definition for encryption! Alternatively 
we could write a privacy definition that looks like Shannon secrecy, and prove that 
it is implied by Definition 3, just as we did for encryption.

Note: Whereas we don’t often explicitly use perfectly secret encryption schemes 
in practice anymore, the most commonly-used secret sharing schemes are indeed 
perfectly private!



The Simplest Case: -of-  XOR sharingn n
• Consider  for some . 
• : 

1. Sample . 
2. Compute . 
3. Output . 

• : 
1. Output . 

Note: if  such that  does not know , 
then  does not have any information about . 
Note: . So collectively we store  bits. 
Question: Can we think of OTP as a special case of this?

ℳ = {0,1}ℓ ℓ ∈ ℕ
𝖲𝗁𝖺𝗋𝖾(m)

s1, …, sn−1 ← {0,1}ℓ

sn := m ⊕ s1 ⊕ … ⊕ sn−1

(s1, …, sn)
𝖱𝖾𝖼𝗈𝗇(s1, …, sn)

s1 ⊕ … ⊕ sn

∃i ∈ [n] 𝒜 si
𝒜 m

∀i ∈ [n], |si | = |m | n ⋅ ℓ



Similarly: -of-  additive sharingn n
• Consider  for some . 
• : 

1. Sample . 

2. Compute . 

3. Output . 
• : 

1. Output . 

Note: those of you who have taken algebra 
might notice these are really two special cases 
of the same general scheme… 
Note: This is a threshold scheme for !

ℳ = ℤℓ ℓ ∈ ℕ
𝖲𝗁𝖺𝗋𝖾(m)

s1, …, sn−1 ← ℤℓ

sn := m − ∑
n−1

i=1
si mod ℓ

(s1, …, sn)
𝖱𝖾𝖼𝗈𝗇(s1, …, sn)

∑
n

i=1
si mod ℓ

t = n − 1



Slightly More General: Thresholds
Definition 4. Threshold Secret Sharing 
A -of-  threshold secret sharing (TSS) scheme is any secret sharing scheme 
where the access structure comprises all subsets of parties of size greater than . 
In other words, a secret sharing scheme with .

(t + 1) n
t

Γ = {X ⊆ 𝒫 : |X | > t}

Our example earlier was a -of-  TSS scheme. 
Can we generalize it?

2 3



-of-  from -of-(t + 1) n (t + 1) (t + 1)
Naïvely, we can envision the following solution to achieve an arbitrary 
threshold among  parties. Let  be the maximum number of corruptions. 

• For every size-  subset of the parties, the Dealer secret-shares  to the 
parties in that subset using a -of-  secret sharing scheme. 

• By the correctness of the -of-  secret-sharing scheme, every set 
of  parties can reconstruct. So our new scheme is also correct. 

• By the privacy of the -of-  secret-sharing scheme, and the fact 
that all of the sharings distributed by the dealer are completely independent, 
the entire set of shares known to any set of  parties has a distribution that is 
independent of the message that is shared. So our new scheme is private. 

Bad News: there are  subsets. When  we have . 

Can we do better?

n t
(t + 1) s

(t + 1) (t + 1)
(t + 1) (t + 1)

t + 1
(t + 1) (t + 1)

t

( n
t + 1) t ≈ n/2 ( n

t + 1) ∈ Ω ( 2n

n )



• Consider  

• : 
1. Find a random line that intersects the y-axis 

at . I.e. let  where  is random. 
2. Output  where  

and . 
• : 

1. Compute . 

2. Output . 
Correctness: follows from high-school geometry :) 
Privacy Intuition: for any  and any  there is a line going through  and .

ℳ = ℕ
𝖲𝗁𝖺𝗋𝖾(m)

m f(x) = a ⋅ x + m a
(s1, s2) s1 = f(1) = a + m

s2 = f(2) = 2a + m
𝖱𝖾𝖼𝗈𝗇(s1, s2)

a :=
s2 − s1

2 − 1
= s2 − s1

s1 − a

s2 m (2,s2) (0,m)

2-of-2 from Simple 2D Geometry

m s1 s2



• Consider  

• : 
1. Find a random line that intersects the y-axis 

at . I.e. let  where  is random. 

ℳ = ℕ
𝖲𝗁𝖺𝗋𝖾(m)

m f(x) = a ⋅ x + m a

2-of-  from Simple 2D Geometryn

m s1 s2

2. Output  where  

• : 

1. Compute . 

2. Output . 

Every pair of shares completely determines . 
Every single share is independent of .

(s1, …, sn) si = f(i) = i ⋅ a + m

𝖱𝖾𝖼𝗈𝗇((i, j), (si, sj))

a :=
sj − si

j − i
si − i ⋅ a

m
m

s3 s4 s5



We want to make it so that 3 points are needed to reconstruct… 

Claim: 3 points define a unique polynomial of degree  
Proof: 

≤ 2

3-of-  from Simple 2D Geometryn

• Let  be points such that . 
• Suppose that both  and  

pass through all three points. That is, . 
• Let . Note that . 
• We also know that . 
• This gives us two possible cases: 

1.  
2.  but  has 3 roots, which is a contradiction! 

(x1, y1), (x2, y2), (x3, y3) x1 ≠ x2 ≠ x3

f(x) = a1 ⋅ x2 + b1 ⋅ x + c1 g(x) = a2 ⋅ x2 + b2 ⋅ x + c2
f(xi) = g(xi) = yi ∀i ∈ [3]

h(x) = f(x) − g(x) deg( f ) ≤ 2 ∧ deg(g) ≤ 2 ⟹ deg(h) ≤ 2
h(xi) = f(xi) − g(xi) = 0 ∀i ∈ [3]

h(x) = 0 ∀x ⟹ f(x) = g(x) ∀x
0 < deg(h) ≤ 2 h ∎



We want to make it so that  points are needed to reconstruct… 

Theorem 1:  points define a unique polynomial of degree   
Proof: 

t + 1
t + 1 ≤ t

-of-  from Simple 2D Geometry(t + 1) n

• Let  be points such that . 

• Suppose that both  and  are polynomials of degree   that 
pass through all  points. That is, . 

• Let . Note that . 
• We also know that . 
• This gives us two possible cases: 

1.  
2.  but  has  roots, which is a contradiction! 

(xi, yi) ∀i ∈ [t + 1] xi ≠ xj ∀i, j ∈ [t + 1]

f(x) g(x) ≤ t
t + 1 f(xi) = g(xi) = yi ∀i ∈ [ ]

h(x) = f(x) − g(x) deg( f ) ≤ ∧ deg(g) ≤ ⟹ deg(h) ≤
h(xi) = f(xi) − g(xi) = 0 ∀i ∈ [ ]

h(x) = 0 ∀x ⟹ f(x) = g(x) ∀x
0 < deg(h) ≤ h t + 1 ∎

t + 1
t t t

t + 1

t



• Consider  

• : 
1. Find a random parabola  that intersects the 

y-axis at . 
2. Output  where . 

• : 

1. Recover the coefficients of . 
2. Output . 

Correctness: from uniqueness of parabola. 
Privacy Intuition: for any  and any  there is a (unique) parabola going 
           through , ,  and .

ℳ = ℕ
𝖲𝗁𝖺𝗋𝖾(m)

f
f(0) = m

(s1, …, sn) si = f(i) ∀i ∈ [n]
𝖱𝖾𝖼𝗈𝗇((i, j, k), (si, sj, sk))

f
f(0)

si, sj m
(i, si) ( j, sj) (0,m)

3-of-  from Simple 2D Geometryn

m s1 s2 s3 s4 s5 s6

we call this 
“interpolation”



• Consider  

• : 
1. Find a random polynomial  of 

degree  that intersects the y-axis at . 
2. Output  where . 

• : 

1. Interpolate . 

Correctness: from uniqueness of degree-  polynomial. 
Privacy Intuition: for any collection of  points and any  there is a (unique) 
             degree-  polynomial going through those points and .

ℳ = ℕ
𝖲𝗁𝖺𝗋𝖾(m)

f
t f(0) = m
(s1, …, sn) si = f(i) ∀i ∈ [n]

𝖱𝖾𝖼𝗈𝗇((i1, …, i ), (si1, …, si ))
f(0)

t
t m

t (0,m)

Finally, -of-  Shamir Sharing(t + 1) n

m s1 s2 s3 s4 s5 s6

t + 1 t + 1



There is one huge problem! Can you see it?

m s1 s2 s3 s4 s5 s6

• How can we sample a polynomial “randomly?” 

• Uniform distributions are not well-defined on 
countably infinite sets such as  and ! 

• Suppose that set  is countably infinite. If the 
probability of every specific element being 
sampled is exactly 0, then 
 

 

and if the probability of every specific element 
being sampled is nonzero, then 
 

 

 
In both cases, we contradict the law of total probability.

ℕ ℤ
S

∑
s∈S

Pr[x = s : x ← S] = 0

∑
s∈S

Pr[x = s : x ← S] = ∞



• We need to work over a finite domain. 

• We need to have at least  distinct x-coordinates. 
Can we work modulo ? 

• No! Suppose again that we want a 2-of-3 scheme. 
Here is the reconstruction algorithm again. Remember, 
we’re working in . How do we define division modulo 4? 

• Suppose  and . 
Real number division won’t work because ½ . 

• What if we define division as “the inverse of multiplication 
modulo 4.” We call this modular multiplicative inverse. 
Is there any number in  that you can multiply by 2 to get ?

n + 1
n + 1

ℤ4

j − i = 2 sj − si = 1
∉ ℤ4

ℤ4 1

There is one huge problem! Can you see it?

(0 ⋅ 2) mod 4 = 0
(1 ⋅ 2) mod 4 = 2
(2 ⋅ 2) mod 4 = 0
(3 ⋅ 2) mod 4 = 2



It’s time to learn about algebraic structures!
Anyone who has taken MATH 3354 or MATH 4652 can take a nap now. 

I will be simplifying heavily in the next part.

It would help us to understand what kind of finite domains support interpolation.



Abstract Algebra
• Think about your favorite number systems (i.e. sets of numbers):  

• We say that a set  is closed under some binary operator  if .  

• , and  are all closed under the operations  and . 

• Notice, however, that inverses aren’t guaranteed by closure.  does not have additive inverses! 
 doesn’t have multiplicative inverses! So some of these behave slightly differently… 

• We can add and multiply other kinds of things: for example, matrices, real-valued functions, 
polynomials. Are they closed? Do they have inverses? Unlike the others, matrix multiplication 
isn’t commutative! So we have another slightly different kind of thing… 

• We can also define other kinds of closed sets with binary operators. 
Consider the set of 2D points on this elliptic curve: 

• If we choose any two points with distinct x-coordinates, and 
draw a line between them, that line touches a third point. 

• It turns out the set of points on an elliptic curve is closed under 
this operation, and inverses exist too! It behaves just like addition.

ℕ, ℤ, ℝ, ℚ, ℂ
S ⋆ x ∈ S ∧ y ∈ S ⟹ x ⋆ y ∈ S

ℕ, ℤ, ℝ, ℚ, ℂ ℤ4 + ⋅
ℕ

ℤ4



We can Categorize by Axioms
Let  be a set and  be a binary operation such that  is closed under . 
Definition 5:  is a group if and only if all of the following axioms hold: 
1. Associativity: . 
2. Identity: there exists an identity element  such that  we have . 
3. Inverses:  such that . 

Definition 6:  is a commutative (a.k.a. abelian) group if it is a group, and: 
4. Commutativity:  we have . 

Definition 7: the order of  is the size of .

𝔾 ⋆ : 𝔾 × 𝔾 → 𝔾 𝔾 ⋆
(𝔾, ⋆ )

∀a, b, c ∈ 𝔾, a ⋆ (b ⋆ c) = (a ⋆ b) ⋆ c
i ∀a ∈ 𝔾 i ⋆ a = a ⋆ i = a

∀a ∈ 𝔾 ∃b ∈ 𝔾 a ⋆ b = i

(𝔾, ⋆ )
∀a, b ∈ 𝔾 a ⋆ b = b ⋆ a

(𝔾, ⋆ ) 𝔾



We can Categorize by Axioms
Let  be a set and  be a binary operation such that  is closed under . 
Definition 5:  is a group if and only if all of the following axioms hold: 
1. Associativity: . 
2. Identity: there exists an identity element  such that  we have . 
3. Inverses:  such that . 

Definition 6:  is a commutative (a.k.a. abelian) group if it is a group, and: 
4. Commutativity:  we have  

𝔾 ⋆ : 𝔾 × 𝔾 → 𝔾 𝔾 ⋆
(𝔾, ⋆ )

∀a, b, c ∈ 𝔾, a ⋆ (b ⋆ c) = (a ⋆ b) ⋆ c
i ∀a ∈ 𝔾 i ⋆ a = a ⋆ i = a

∀a ∈ 𝔾 ∃b ∈ 𝔾 a ⋆ b = i

(𝔾, ⋆ )
∀a, b ∈ 𝔾 a ⋆ b = b ⋆ a

Question: is  a group? 
                   is   a group? 
                   is  a group? 
                   is  a group, where ?

(ℤ, + )
(ℤ, ⋅ )
(ℝ, ⋅ )
(ℝ*, ⋅ ) ℝ* = ℝ∖{0}

Yes.  
No. 2 has no inverse. 
No. 0 has no inverse. 
Yes.



We can Categorize by Axioms
Let  be a set and  be a binary operation such that  is closed under . 
Definition 5:  is a group if and only if all of the following axioms hold: 
1. Associativity: . 
2. Identity: there exists an identity element  such that  we have . 
3. Inverses:  such that . 

Definition 6:  is a commutative (a.k.a. abelian) group if it is a group, and: 
4. Commutativity:  we have  

𝔾 ⋆ : 𝔾 × 𝔾 → 𝔾 𝔾 ⋆
(𝔾, ⋆ )

∀a, b, c ∈ 𝔾, a ⋆ (b ⋆ c) = (a ⋆ b) ⋆ c
i ∀a ∈ 𝔾 i ⋆ a = a ⋆ i = a

∀a ∈ 𝔾 ∃b ∈ 𝔾 a ⋆ b = i

(𝔾, ⋆ )
∀a, b ∈ 𝔾 a ⋆ b = b ⋆ a

Question: is  a group, where  
                             is the set of all  matrices over ? 
                   is   a group? 
                   is  a group, 
                             where ?

(Mn×m(ℝ), + ) Mn×m(ℝ)
n × m ℝ

(Mn×n(ℝ), ⋅ )
(GLn(ℝ), ⋅ )

GLn(ℝ) = {x ∈ Mn×n(ℝ) : det(x) ≠ 0}

Yes.  

No. Some elements are non-invertible. 
Yes. But not commutative.



We can Categorize by Axioms
Let  be a set and  be a binary operation such that  is closed under . 
Definition 5:  is a group if and only if all of the following axioms hold: 
1. Associativity: . 
2. Identity: there exists an identity element  such that  we have . 
3. Inverses:  such that . 

Definition 6:  is a commutative (a.k.a. abelian) group if it is a group, and: 
4. Commutativity:  we have  

𝔾 ⋆ : 𝔾 × 𝔾 → 𝔾 𝔾 ⋆
(𝔾, ⋆ )

∀a, b, c ∈ 𝔾, a ⋆ (b ⋆ c) = (a ⋆ b) ⋆ c
i ∀a ∈ 𝔾 i ⋆ a = a ⋆ i = a

∀a ∈ 𝔾 ∃b ∈ 𝔾 a ⋆ b = i

(𝔾, ⋆ )
∀a, b ∈ 𝔾 a ⋆ b = b ⋆ a

Out of Scope: we can also build groups from polynomials. 
                          we can build groups from geometry and topology. 
                          the set of bijective functions is a group under the composition operator .∘

If a mathematical statement relies only on group axioms, it holds for any group.



Finite Groups (by Example)

Yes.

a a
−a

Consider  where  is interpreted as addition modulo . 
Closure: holds because the range of   is . 
Associativity, Identity, Commutativity: the same as integer   on . Identity element is 0. 
Inverses: Because , the additive inverse of 0 is itself. 
                 Notice that . The additive inverse of  is a number  
                 such that . Does  always exist? 
                 We will refer to the additive inverse of  as “ ”. Note that maybe ! 
You can imagine a finite group working like a clock:

(ℤm, + ) + m
mod m [0,m − 1] = ℤm

+ ℤ
0 + 0 = 0

m mod m = 0 a ∈ ℤm b ∈ ℤm
(a + b) mod m = m mod m = 0 b ∈ ℤm

a −a |a | ≠ | − a |



Let’s Look Again at What We Need

2. Additive inverses

1. Structure with addition, 
   multiplication, finite order.



Let’s Look Again at What We Need

2. Additive inverses

Since we require distinct 
x-coordinates, to reconstruct, 
we don’t need a multiplicative 
inverse for .0

3. Multiplicative inverses

1. Structure with addition, 
   multiplication, finite order.



We can Categorize by Axioms
Let  be a set and  and  be binary operations under which  is closed. 
Definition 8:  is a field if and only if all of the following conditions hold: 
1.  is a commutative group. Let the additive identity be denoted . 
2.  is a commutative group. Let the multiplicative identity be denoted . 
3. Distributivity:   we have .

𝔽 + : 𝔽 × 𝔽 → 𝔽 ⋅ : 𝔽 × 𝔽 → 𝔽 𝔽
(𝔽, + , ⋅ )

(𝔽, + ) 0
(𝔽∖{0}, ⋅ ) 1

∀a, b, c ∈ 𝔽 a ⋅ (b + c) = a ⋅ b + a ⋅ c

Question: is  a field? 
                   is  a field? 
                   is  a field (ops are modular)? 
                   is  a field (ops are modular)?

(ℤ, + , ⋅ )
(ℝ, + , ⋅ )
(ℤ4, + , ⋅ )
(ℤ5, + , ⋅ )

No. 2 has no multiplicative inverse. 
Yes. 
No. 2 has no multiplicative inverse. 
Yes.
(1 ⋅ 1) mod 5 = 1
(2 ⋅ 3) mod 5 = 6 mod 5 = 1
(3 ⋅ 2) mod 5 = 6 mod 5 = 1
(4 ⋅ 4) mod 5 = 16 mod 5 = 1



Next Time: When is  a Field?ℤm
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