CS4501 Cryptographic Protocols
Lecture 3: Simulation, Communication

https://jackdoerner.net/teaching/#2026/Spring/CS4501

The Ideal World

1. Each P. sends its input x; to the ()
which is a trusted third party:. X4

2. computes y = f(x, ..., x,).

n

X3 2
3. sends y to every party, and they output it. %} ¢
N =

The Real World

1. The parties (P, ..., P,) run a protocol 7 on inputs (x, ..., x)

2. When 7 terminates, the parties output y.

For every real adversary, and ideal adversary

Goal of &': produce output
indistinguishable from </

L

the Simulator & the Adversary &/

Is & is Indistinguishable from </? Who will Judge?

the Simulator & the Distinguisher &

the Distinguisher &

o Interacts with one of the worlds and attempts to
determine which one by running an experiment.

R e Chooses input for all parties. Cannot “look into” the world.

. @ o Receives outputs from all parties and either & or /.

e Guesses whether the world is ideal or real.

the Simulator & the Distinguisher &

Finally, How to Define Simulation-Based Security!

Is & IS

Definition 1. The protocol 7 realizes the ideal functionality
in the presence of some class of adversaries if:

o’ V o/ in the class 3 & such that V9
"@ Pr[& guesses correctly, given random world] is very close to

(we will define what very close means later)

the Simulator & the Distinguisher &

The Simulation-Based Security Paradig

- N - N
‘— .. ‘— ..

\
\ g N \ g ~§

the Simulator & the Distinguisher &

Specifying the Details

We’ve met the players, but in order to understand what we’re achieving, we
must know more about them.

. what do we want to compute, and with what IO behavior?
A functionality can also capture vulnerabilities by directly taking inputs
from or leaking information to the simulator &'.

o Adversarial Model: what kinds of behavior and interaction with the system
do we want to protect against? E.g. who can be corrupted?

e Security Type: how strong should our protection be? How much computing
power does & have? How much better than random is the guesswork of &

allowed to be?

e Network Model: Who is connected to who in the real world? Are those
connections private? Do the parties have a shared clock? Is there a way to

broadcast reliably?

Facets of Adversarial Models

Behavior:

o Semi-honest (a.k.a. Passive): corrupted parties follow the protocol honestly, but
share their internal state with &/, who tries to learn more than is allowed.

o Malicious (a.k.a. Active): corrupted parties can deviate from the protocol
instructions in arbitrary ways. &/ coordinates their actions.

Adversarial Power:

e Unbounded (i.e. "all-powerful”): o/ has unlimited computing power.
Can break any cryptographic assumption. We can still achieve security using

information theory!
e Computationally Bounded: </ runs in Probabilistic Polynomial Time (PPT).

Behavior:

o Semi-honest (a.k.a. Passive): corrupted parties follow the protocol honestly, but
share their internal state with &/, who tries to learn more than is allowed.

o Malicious (a.k.a. Active): corrupted parties can deviate from the protocol
instructions in arbitrary ways. &/ coordinates their actions.

Adversarial Power:

e Unbounded (i.e. "all-powerful”): o/ has unlimited computing power.
Can break any cryptographic assumption. We can still achieve security using «—
information theory!

e Computationally Bounded: </ runs in Probabilistic Polynomial Time (PPT).

242y Q4035 TN 2M

Corruption Strategy:

N

e Static: corruptions are determined at the beginning of the experiment.
Honest parties always stay honest.

o Adaptive: o/ can dynamically corrupt parties during the protocol (security
is very hard to achieve in this setting).

Security Types

Perfect:
o & and </ have unbounded computational power.

o The real and ideal experiments must be identically distributed from the
perspective of .

o < must be able to do no better than a random guess.

Statistical:
o & and &/ have unbounded computational power.

o The real and ideal experiments must be statistically indistinguishable.
(Their statistical distance must be negligible relative to the security parameter)

242y Q4035 TN 2M j

rerrccl.
e & and &/ have unbounded computational power.

o The real and ideal experiments must be identically distributed from the
perspective of 4.

o < must be able to do no better than a random guess.

Statistical:
e & and </ have unbounded computational power.
o The real and ideal experiments must be statistically indistinguishable.
(Their statistical distance must be negligible relative to the security parameter)

Computational:
o & and are efficient. They run in PPT.

o We can make cryptographic assumptions. That is, we can assume certain
computational problems can't be solved by & or /.

o The real and ideal experiments must be computationally indistinguishable. This
means that the outputs of & are statistically close when it interacts with the
real and ideal experiments, even though the experiments themselves might
have statistically far distributions.

Simulation-Based Security
by Example

Example: n-Party Sum

o Let M be some positive integer fixed a priori.

o Each P, has private input x; < M/n.

. They wish to compute y = Z X:.

l
1€ nj

Notation

[n] =1{1,...,n}

In,m| = {n,...,m}

7, 1s the integers modulo M.
For our purposes, Z,, = [0.M — 1].

x < D where D is a distribution means x is a
random var distributed according to D

x < S where S is a set means x is sampled
from the uniform distribution over §

SNy
X9 \ //C;//“A\) ‘/é? X6
@§©(l’ 6§%x
*\X‘ X1 %070
&~ r<— Zy e

Example: n-Party Sum

Semi-honest &/ statically corrupts at most
one party (WLOG P5)

< learns m, = x, + x; + r mod M

Last time we talked about the
property of privacy.

Vie Z, Prlm, =il =1/M

In other words, the distribution of
m, is independent of x;, and x,.

o/ could sample m, < Z,, on its own.

Example: n-Party Sum

o Semi-honest &/ statically corrupts at most
one party (WLOG P5)

o o learns m, = x, +x; +r mod M

e Now we have introduced the real-ideal
model. We want to prove that for every
such o/ there is a simulator &'.

V o/ in the class 4 & such that VY
Pr[2 guesses correctly] is very close to)

Semi-honest, statically corrupts <1

e« We know what the real-world experiment
looks like. What's missing from our picture of the ideal world?

Example: n-Party Sum

[

e Missing Piece #1: what do
we want this protocol to realize?

o Let M be some positive integer

o Each P, has private input x; < M/n

. They wish to compute y = Z X:

l
1€[n]

Example: n-Party Sum

e Missing Piece #1: what do X4
. -
we want this protocol to realize 7\
global parameters _ (' X5

“name” (ot parky inpuks) «, Z
name —w f cﬁii&&.ﬂ ahzxucfear 3 @) "~) @A\)

Functionality

1. Receive x: € N such that x. < M/n
from P. for every i € [n].

2. Compute y = Z X;.

1€|n]

3. _Send y to P, for every i € [n].

can communicabte Lilke a par&v
(Laker we will see that there is wmore nuance)

Example: n-Party Sum

o Missing Piece #2: how can we construct a
simulator & that mimics he output of </ for
any </ (semi-honest, one static corruption).

o« Remember our quantifier order. Since we
insisted V «f 4 &, we can define an & that
depends upon the code of /.

o These are all computer programs, so & can

run SZ[ccin its heada’ (le aS ad SubI‘OutiHE)! ' ///)'//\\)
o If & can trick o/ into thinking it’s in the real- o7

world experiment, then </ will output exactly
what it would output in the real world. & can
forward </°s output to .

Example: n-Party Sum

e Missing Piece #2: how can we construct a
simulator & that mimics he output of </ for
any </ (semi-honest, one static corruption).

Simulator &'(n)

1. Emulate o/ in an interaction with the
protocol.

2. When ¢ tries to corrupt emulated P,
corrupt P, in the ideal world and learn
its input x. Make x: the input of the
emulated P, before corruption occurs.

3. Send x: to on behalf of P..
4. Receive y from on behalf of P..

5. Use x: and y to continue emulating the
real world.

6. When &/ halts, output what it does.

Example: n-Party Sum, Ideal vs Real Worlds

Example: n-Party Sum, Ideal vs Real Worlds

Example: n-Party Sum, Ideal vs Real Worlds

' %) What & receives in the Ideal World: What & receives in the Real World:
X3 M
[/W
I o Honest parties output: y = Zi il i o Honest parties output: 2,
i L . L
' o Output of emulated </ (a fn of its view). e Output of &/ (a function of its view).
ke x Emulated &/°s view if it corrupts P.: s view if it corrupts P,:
“ (xc9 mc—la mc9)’) ('XC’ mC—l’ mc’ mn+1)
) 2

Example: n-Party Sum, Ideal vs Real Worlds

What & receives in the |deal World:

« Honest parties output: y =)’

X
iE€[n] !
e Output of emulated </ (a tn of its view).

Emulated &/°s view if it corrupts P.:
(xc’ m._p, me, y)

| TT—— —

What Y receives in the Real World:

e Honest parties output: 2,
o Output of & (a function of its view).

o’s view if it corrupts P, :
(xc’ Me_1, My mn+1)

| — S——

o Since (x, ..., x,) are determined by
<, they are distributed identically in
both worlds.

o m._, is uniformly distributed in
both worlds.

o m,1is deterministic given m,._; and x,
and thus identically distributed in
both worlds.

o By the correctness property of the

protocol, m, . | = Zie[n] x. in the

real world, which is identically
distributed to ideal-world y.

o Therefore the view of &/ is identically
distributed in the two worlds, and
so 1s 1ts output.

o Therefore the view of & is identically
distributed in the two worlds.

e Therefore,

' guesses correctly |
Pr

given random world

1

2

o This holds V &/ V &, regardless of

computation power, so we have...

Theorem 1. The sum protocol pertectly

realizes in the presence of a
semi-honest adversary that statically

corrupts up to one party.

Take a big breath. Let it sink in.
This will be easy for you by the End.
Let’s generalize what we just saw.

Generalizing the Functionality

Functionality

Receive x: € N such that x. < M/n
from P. for every i € [n].

Compute y = Z X;.

1E€[n]

Send y to P, for every i € [n].

o Functionalities can contain any arbitrary code.
They can react dynamically to new instructions
or data from parties while their computations
are in progress, keep persistent state between
invocations, or even communicate with & directly.

e However, in this class we care about the above
pattern: receive inputs from everyone, compute a
function, deliver outputs to everyone. This is called
Secure Function Evaluation (SFE).

« Rather than specity every instance of this pattern
individually, we will give a general SFE functionality.
This is the main functionality we will care about!

o Suppose we have n parties, and every P. for i € [n]
has an input in the set 2; and expects an output in

the set % ..

o An n-ary function f maps n inputs to n outputs.
If the ith input is in 2, and the ith output is in %, we
denote thiswith f: &'\ X ... XX — Y X ... X Y.

Functionality

1. Receive x: € 2. from P, for every
1 € [n].

2. Compute (y,...,v,) = f(x;, ..., x,).
3. Send y; to P; for every i € [n].

Generalizing the Functionality

o Rather than specity every instance of this pattern o Notice that guarantees correctness, privacy, input
individually, we will give a general SFE functionality. independence, and output delivery!

This is the main functionality we will care about! ,
o We will often say that a protocol 7 securely computes or

o Suppose we have n parties, and every P. for i € [n] securely evaluatesf: X | X ... XX — Y X ... XY,.
has an input in the set 2; and expects an output in This usually means that 7 realizes
the set /. « More Notation: The set of bit-strings of length m is

e An n-ary function f maps n inputs to n outputs. denoted {0,1}"”, and the set of bit-strings of any length
If the ith input is in 2, and the ith output is in %, we is {0,1}*. The empty set is O, the empty string is 1, and
denote thiswith /: X'\ X ... XX, —- Y X ... XY . an n-ary function with unrestricted domain and range

, , is denoted f: ({0,1}%)" — ({0,1}*)"
Functionality

o Note: many of your homework problems will be of the
form “Construct a protocol that securely computes f and
prove that it is secure.” You have now seen enough to
start solving these kinds of problems!

1. Receive x: € 2. from P, for every
1 € [n].

2. Compute (y,...,v,) = f(x, ..., x,).
Send y. to P, for every i € [n].

Generalizing the Functionality

For Example, we just proved that the sum protocol securely computes

fxy,...,x,) = (y,...,y) where each 2. = [O, (M/n| + 1] and y =) X

ic[n] v

More examples of functions that we can imagine security computing:
e Boolean AND: f(x,...,x,) = (y,...,y) whereeach 2, = {0, } and y = x; A ... A x,.
e Boolean XOR: f(x,....,x,) = (y,...,y) whereeach 2. = {0, }and y=x, & ... ® x.

o Asymmetric functions, e.g. f(x,...,x,) = (v{,V», 4, ..., 4) where each 2. = {0,1}
and y, = x; @ x, and y, = x; A x;. It's important which party supplies which input!

o [(5,5)=085,Nn8,|5NS,|)where X', =2, =% and 7 is some universe.
Q:What is the “task name” for this function? We’ve seen it before!

Generalizing the Functionality

Functionalities can also be randomized!

In the context of Secure Function Evaluation, this implies that there is an (7 + 1)st
input to fthat is uniformly distributed over {0,1}*. This input is used as a random tape
(i.e. a sequence of random coin flips) by the code of /.

Usually this extra input is implicit, but sometimes it will be important to specify exactly
which random tape was used. In this case we will write f(x,, ..., x,; r) for random tape r.

More examples of randomized functions that we can imagine security computing:
e Coin Tossing: f(4,...,4) = (b, ...,b) where b < {0,1}.
e Leader Election: f(4,...,4) = (i, ...,1) where i < [n].

o Blind Encryption: f(m, sk) = (Encg(m), 1) where Enc is an encryption function.

Generalizing the View of &/

When o/ is semi-honest the corrupted parties follow the protocol instructions.

Without loss of generality, we can assume that </ always outputs everything it sees in
the protocol. Q: why is this?

So, what does </ see in the execution of an arbitrary protocol 7?

For every i € [n], let view; denote the view of P, which contains

o 'The input x. of P..

e The random coins of P, denoted r.

o The messages received by P. during the protocol.

Note that:

o Messages sent by P, are a (deterministic) function of its view at the time of sending.

o 'The output of P, is a function of its view at the end of the protocol.

Generalizing the View of &/

Suppose that o/ statically semi-honestly corrupts up to 7 parties. Let / = {7, ..., [}
index the set of corrupted parties, and let view; = {view,, ..., view; } be the views

of those parties.

Typically, view, represents single, specific execution of the protocol involving a
specific, fixed set of random tapes for all participants. We denote the corresponding
random variable (in which the random coins are uniformly distributed and all other
values are derived from them as expected) using VIEW,.

Similarly, we use output. to denote the output of P; when the protocol ends, and
output = {output;, ..., outputn} to denote the outputs of all parties. OUTPUT ,, then,
is the corresponding random variable.

A Simplified Definition for Semi-Honest &/

Definition 2. Perfect Semi-Honest Secure Function Evaluation (Simplified).

Letn,r € Nsuchthatr <n,letf: X X ... XX — Y%, X ... X%, bean n-ary function,
and let 7 be a n-party protocol.

We say that 7 perfectly securely computes f in the presence of a semi-honest adversary
that statically corrupts up to 7 parties if there exists a simulator algorithm Sim such that
for every / C [n] of size |/| <t and every input vector x € 2, X ... X 2, it holds that

(Sim (1%,./3)). f()'c’)) — (VIEW,, OUTPUT,)

Simulated view of L_ Real view of

CQTN'F& PMEE‘QS‘ COW‘,P“&Qd c:orrup& F»om&i;es i the pro&o&oh
using corrupt party tnputs

and ouk F'u,Es

A Simplified Definition for Semi-Honest &/

Definition 2. Perfect Semi-Honest Secure Function Evaluation (Simplified).

Letn,r € Nsuchthatr <n,letf: XX ... XX — Y, X ... X%, bean n-ary function,
and let 7 be a n-party protocol.

We say that 7 perfectly securely computes f in the presence of a semi-honest adversary
that statically corrupts up to 7 parties if there exists a simulator algorithm Sim such that
for every / C [n] of size |/| <t and every input vector x € 2, X ... X 2, it holds that

(Sim (1%,./3)). f()'c’)) = (VIEW,, OUTPUT,)

j L_ Output of all parties

Id@.&i. COMF’M&O\E&OM A real F»rOEQ&QL

A Simplified Definition for Semi-Honest &/

Definition 2. Perfect Semi-Honest Secure Function Evaluation (Simplified).

Letn,r € Nsuchthatr <n,letf: XX ... XX — Y, X ... X%, bean n-ary function,
and let 7 be a n-party protocol.

We say that 7 perfectly securely computes f in the presence of a semi-honest adversary
that statically corrupts up to 7 parties if there exists a simulator algorithm Sim such that
for every / C [n] of size |/| <t and every input vector x € 2, X ... X 2, it holds that

(Sim (1%,./3)). f()'c’)) = (VIEW,, OUTPUT,)
»T\

l

Idem&mauj Diskribubed

A Simplified Definition for Semi-Honest &/

Definition 2. Perfect Semi-Honest Secure Function Evaluation (Simplified).

Letn,r € Nsuchthatr <n,letf: XX ... XX — Y, X ... X%, bean n-ary function,
and let 7 be a n-party protocol.

We say that 7 perfectly securely computes f in the presence of a semi-honest adversary
that statically corrupts up to 7 parties if there exists a simulator algorithm Sim such that
for every / C [n] of size |/| <t and every input vector x € 2, X ... X 2, it holds that

(Sim (1%,./3)). f()'c’)) = (VIEW,, OUTPUT,)

Sanity Check: if Definition 2 holds, can we build & so that the full security
definition holds too with respect to ?

An Even Simpler Def for Deterministic /!

Definition 3. Perfect Semi-Honest Secure Deterministic Function Evaluation.

Letn,r € Nsuchthatr <n,letf: XX ... XX — Y, X ... X%, bean n-ary function,
(which does not use any randomness) and let 7 be a n-party protocol.

We say that 7 perfectly securely computes f in the presence of a semi-honest adversary
that statically corrupts up to 7 parties if

1. For every input vector x € 2, X ... 2, it holds that f(x) = OUTPUT,.

2. There exists a simulator algorithm Sim such that for every / C [n] of size |/| <1
and every input vector x € 2°, X ... X 2, it holds that

Sim (1, X, /X)) = VIEW,

Why only for Deterministic f?

Consider the randomized 2-ary function f: (1,4) — (b, A1) where b < {0,1}
along with the following 2-party protocol z:

P, samples b < {0,1 } uniformly, sends / to P,, and outputs 5. P, outputs nothing.

Claim: 7 securely computes | per Definition 3.
Proof Sketch.
1. OUTPUT, = (b, A) where b < {0,1}, thus f(1,4) = OUTPUT,
2. Let Sim be defined such that:
o If is P, corrupted, Sim sets the random tape of P, such that b < {0,1}.
o If is P, corrupted, Sim sets the received message of P, to be b < {0,1}.
In both cases, Sim (1, X, /(X)) = VIEW, B

Why only for Deterministic f?

Consider the randomized 2-ary function f: (1,4) — (b, A1) where b < {0,1}
along with the following 2-party protocol z:

P, samples b < {0,1 } uniformly, sends / to P,, and outputs 5. P, outputs nothing.

But Wait! This protocol shouldnt be secure! It leaks b when f doesn’t specity to do so!

Under Definition 2, we consider the joint distribution of all outputs and corrupt views,
which means that the view produced by Sim when P, is corrupt has to be consistent
with the output of P,.

But when P, is corrupt, the output of P, is randomized and Sim doesn’t learn it,
so the best-case scenario is that Sim has an error probability of .

Security definitions are subtle!
Definitions 2 and 3 are equivalent only if f is deterministic.

How Do Parties Commmunicate
in the Real World?

Secure Communication

Suppose Alice wishes to send a message to Bob. We say she uses a channel.

In the real world their message must traverse a network of many computers that
they do not own or trust. It is likely that they do not trust or even know the person
to whom each node belongs.

We model this by assuming that &/ controls all real-world communication
by default. </ is free to read and alter communication between honest parties.

Unsurprisingly, not much can be achieved
in this insecure channel model.

To help us make progress, we will introduce
two more-powerful channel types.

Secure Communication

Authenticated Channels:

These channels allow the adversary to learn the content of the message, but not
to alter it (including by silently dropping any part of it or injecting something new).

o If &/ is semi-honest, this comes for free because < follows the (network) protocol!

e If o/ is malicious, we can do more work to build an authenticated channel. We need
a way to determine if </ has altered messages on the wire. We'll come back to this!

Secure Channels:

These channels are authenticated and private.
They allow </ to learn only (an upper bound on)
the length of m.

How to add privacy to an authenticated channel?

Symmetric Encryption

We begin by giving Alice and Bob matching encryption and decryption algorithms,
Enc and Dec respectively, which can transform the message m into a ciphertext c.
We don’t want </ to be able to decrypt, so Bob’'s decryption capability must be tied
to a secret that only he and Alice know.

Q: Is it reasonable for this secret to be the algorithm Dec?

Kerckhoft’s Principle

Phrased by Claude Shannon as: “the enemy knows the system”.

We should assume all algorithm descriptions are public. We can only keep some
small piece of agreed-upon data secret. We call this the secret key k.

Q: Suppose Alice and Bob use a fixed value of k. What happens when we quantity
over all adversaries o/? How can we get around this problem?

Symmetric-Key Encryption (SKE)

Definition 4. Syntax for SKE

For k € N, let .Z/,_be a message space, %, be a key space, and &, be a ciphertext space.
A Symmetric-Key Encryption Scheme is a trio of algorithms (Gen, Enc, Dec) such that:

o Given security parameter 1*, randomized key-generation algorithm k < Gen(1%)

outputs some secret key k EK%Q.\
Unary répréﬁev\&a&mv\, Le. K ones,

Important in the second half of the course...

Symmetric-Key Encryption (SKE)

Definition 4. Syntax for SKE

For k € N, let .Z/,_be a message space, %, be a key space, and &, be a ciphertext space.
A Symmetric-Key Encryption Scheme is a trio of algorithms (Gen, Enc, Dec) such that:

o Given security parameter 1%, randomized key-generation algorithm k < Gen(1%)
outputs some secret key k € FA .

o The encryption algorithm ¢ < Enc;(m) outputs a (possibly randomized) ciphertext
c € ¢, given a message m € //, and key k € A ..

o 'The decryption algorithm m = Dec;(c) outputs a deterministic message m € ./,
given a ciphertext ¢ € ¢, and key k € 7 ..

Definition 5. Correctness for SKE
VkeNVke X _Vme M. Deci(Enci(m)) = m

Security Definitions are Subtle

Earlier when we drew this picture, there was only one secret value. What was it?

Idea 1. &/ cannot learn k.
Problem. Enc,(m) = m is a valid encryption scheme under this definition.

ldea 2. &/ cannot learn m.

Problem. What it </ learns half of m.

Security Definitions are Subtle

Idea 1. &/ cannot learn k.

Problem. Enc,(m) = m is a valid encryption scheme under this definition.

Idea 2. &/ cannot learn m.

Problem. What if &/ learns half of m.

Idea 3. &/ cannot learn any bit of m.

Problem. What if </ learns f(m) where f does not leak any individual bit (e.g. parity).
Idea 4. &/ cannot learn any function of m.

Problem. This is unachievable! What it <&/ already knows a function of m?
(e.g. knows that ¢ encrypts a day of the week. The last letter of m is always y).

Idea 5. &/ cannot learn any new information about m.

And now it’s time to talk about
Claude Shannon

Idea 5. &/ cannot learn any new information about m.

What does this mean?

CS4501 Cryptographic Protocols
Lecture 3: Simulation, Communication

https://jackdoerner.net/teaching/#2026/Spring/CS4501

