
CS4501 Cryptographic Protocols 
Lecture 3: Simulation, Communication

https://jackdoerner.net/teaching/#2026/Spring/CS4501



1. Each  sends its input  to the ideal functionality ( ) 
which is a trusted third party. 

2.  computes . 

3.  sends  to every party, and they output it.

Pi xi ℱ

ℱ y = f(x1, …, xn)

ℱ y

The Ideal World

x1

x6x2

x3

x4

x5



1. The parties  run a protocol  on inputs  

2. When  terminates, the parties output .  

(P1, …, Pn) π (x1, …, xn)

π y

The Real World

x1

x6x2

x3

x4

x5



For every real adversary, and ideal adversary

the Simulator 𝒮 the Adversary 𝒜

Goal of : produce output 
indistinguishable from  

𝒮
𝒜



Is  is Indistinguishable from ? Who will Judge?𝒮 𝒜

the Simulator 𝒮 the Adversary 𝒜the Distinguisher 𝒟



Is  is Indistinguishable from ? Who will Judge?𝒮 𝒜

the Simulator 𝒮 the Adversary 𝒜the Distinguisher 𝒟

the Distinguisher 𝒟

• Interacts with one of the worlds and attempts to 
determine which one by running an experiment.

• Chooses input for all parties. Cannot “look into” the world.

• Receives outputs from all parties and either  or . 𝒮 𝒜

• Guesses whether the world is ideal or real.



Is  is Indistinguishable from ? Who will Judge?𝒮 𝒜

the Simulator 𝒮 the Adversary 𝒜the Distinguisher 𝒟

Finally, How to Define Simulation-Based Security!

Definition 1. The protocol  realizes the ideal functionality 
 in the presence of some class of adversaries if:

π
ℱ

  in the class∀ 𝒜  ∃ 𝒮 such that  ∀ 𝒟
 is very close to ½Pr[  guesses correctly, given random world]𝒟

(we will define what very close means later)

≈



The Simulation-Based Security Paradigm

the Simulator 𝒮 the Adversary 𝒜the Distinguisher 𝒟

≈



Specifying the Details
We’ve met the players, but in order to understand what we’re achieving, we 
must know more about them.

• Adversarial Model: what kinds of behavior and interaction with the system 
   do we want to protect against? E.g. who can be corrupted? 

• Security Type: how strong should our protection be? How much computing 
   power does  have? How much better than random is the guesswork of  
   allowed to be? 

𝒟 𝒟

• Network Model: Who is connected to who in the real world? Are those  
   connections private? Do the parties have a shared clock? Is there a way to 
   broadcast reliably? 

• Functionality: what do we want to compute, and with what IO behavior? 
   A functionality can also capture vulnerabilities by directly taking inputs 
   from or leaking information to the simulator .𝒮



Facets of Adversarial Models

Adversarial Power: 
• Unbounded (i.e. “all-powerful”):  has unlimited computing power. 

Can break any cryptographic assumption. We can still achieve security using 
information theory! 

• Computationally Bounded:  runs in Probabilistic Polynomial Time (PPT).

𝒜

𝒜

Behavior: 
• Semi-honest (a.k.a. Passive): corrupted parties follow the protocol honestly, but 

share their internal state with , who tries to learn more than is allowed. 
• Malicious (a.k.a. Active): corrupted parties can deviate from the protocol 

instructions in arbitrary ways.  coordinates their actions. 

𝒜

𝒜



Corruption Strategy: 
• Static: corruptions are determined at the beginning of the experiment. 

Honest parties always stay honest. 
• Adaptive:  can dynamically corrupt parties during the protocol (security 

is very hard to achieve in this setting).
𝒜

Behavior: 
• Semi-honest (a.k.a. Passive): corrupted parties follow the protocol honestly, but 

share their internal state with , who tries to learn more than is allowed. 
• Malicious (a.k.a. Active): corrupted parties can deviate from the protocol 

instructions in arbitrary ways.  coordinates their actions. 

𝒜

𝒜

Adversarial Power: 
• Unbounded (i.e. “all-powerful”):  has unlimited computing power. 

Can break any cryptographic assumption. We can still achieve security using 
information theory! 

• Computationally Bounded:  runs in Probabilistic Polynomial Time (PPT).

𝒜

𝒜

Facets of Adversarial Models

`

W
e w

ill start here



Security Types

Statistical: 
•  and  have unbounded computational power. 
• The real and ideal experiments must be statistically indistinguishable. 

(Their statistical distance must be negligible relative to the security parameter)

𝒟 𝒜

Perfect: 
•  and  have unbounded computational power. 
• The real and ideal experiments must be identically distributed from the 

perspective of . 
•  must be able to do no better than a random guess.

𝒟 𝒜

𝒟
𝒟

W
e w

ill start here



Statistical: 
•  and  have unbounded computational power. 
• The real and ideal experiments must be statistically indistinguishable. 

(Their statistical distance must be negligible relative to the security parameter)

𝒟 𝒜

Perfect: 
•  and  have unbounded computational power. 
• The real and ideal experiments must be identically distributed from the 

perspective of . 
•  must be able to do no better than a random guess.

𝒟 𝒜

𝒟
𝒟

Computational: 
•  and  are efficient. They run in PPT. 
• We can make cryptographic assumptions. That is, we can assume certain 

computational problems can't be solved by  or . 
• The real and ideal experiments must be computationally indistinguishable. This 

means that the outputs of  are statistically close when it interacts with the 
real and ideal experiments, even though the experiments themselves might 
have statistically far distributions.

𝒟 𝒜

𝒟 𝒜

𝒟



Simulation-Based Security 
by Example



• Let  be some positive integer fixed a priori. 

• Each  has private input . 

• They wish to compute .

M

Pi xi ≤ M/n

y = ∑
i∈[n]

xi

x1

x6

Example: -Party Sumn

Notation

[n] = {1,…, n} [n, m] = {n, …, m}

 is the integers modulo . 
      For our purposes, .
ℤM M

ℤM = [0,M − 1]

 where  is a distribution means  is a 
      random var distributed according to 
x ← D D x

D

 where  is a set means  is sampled  
      from the uniform distribution over 
x ← S S x

S

r ← ℤM

x2

x3

x4

x5

m 1
= x 1

+ r mod M

m2 = x2 + m1 mod M

m
3 = x3 + m

2 mod M m 4
= x 4

+ m 3
mod M

m5 = x5 + m4 mod M

m
6 = x6 + m

5 mod M

y = m7 = m6 − r mod M

B



• Semi-honest  statically corrupts at most 
one party (WLOG ) 

•  learns 

𝒜
P3

𝒜 m2 = x2 + x1 + r mod M

• Last time we talked about the 
property of privacy.

x1

x6

Example: -Party Sumn

r ← ℤM

x2

x3

x4

x5

m 1
= x 1

+ r mod M

m2 = x2 + m1 mod M

m
3 = x3 + m

2 mod M m 4
= x 4

+ m 3
mod M

m5 = x5 + m4 mod M

m
6 = x6 + m

5 mod M

y = m7 = m6 − r mod M

B•  

• In other words, the distribution of 
 is independent of  and . 

•  could sample  on its own. 

∀i ∈ ℤM Pr[m2 = i] = 1/M

m2 x1 x2

𝒜 m2 ← ℤM



• Semi-honest  statically corrupts at most 
one party (WLOG ) 

•  learns 

𝒜
P3

𝒜 m2 = x2 + x1 + r mod M

Example: -Party Sumn

• Now we have introduced the real-ideal 
model. We want to prove that for every 
such  there is a simulator .𝒜 𝒮

x1

x6

r ← ℤM

x2

x3

x4

x5

m 1
= x 1

+ r mod M

m2 = x2 + m1 mod M

m
3 = x3 + m

2 mod M m 4
= x 4

+ m 3
mod M

m5 = x5 + m4 mod M

m
6 = x6 + m

5 mod M

y = m7 = m6 − r mod M

B

  in the class∀ 𝒜  ∃ 𝒮 such that  ∀ 𝒟
 is very close to ½Pr[  guesses correctly]𝒟

Semi-honest, statically corrupts ≤ 1

• We know what the real-world experiment 
looks like. What’s missing from our picture of the ideal world?



• Missing Piece #1: what functionality do 
we want this protocol to realize?

x1

x6

Example: -Party Sumn

x2

x3

x4

x5• Let  be some positive integer 

• Each  has private input  

• They wish to compute 

M

Pi xi ≤ M/n

y = ∑
i∈[n]

xi



• Missing Piece #1: what functionality do 
we want this protocol to realize?

x1

x6

Example: -Party Sumn

x2

x3

x4

x5

Functionality ℱ𝗌𝗎𝗆(n, M)

“name”
global parameters 
(not party inputs) 
omitted when clear

1. Receive  such that  
from  for every . 

2. Compute . 

3. Send  to  for every .

xi ∈ ℕ xi ≤ M/n
Pi i ∈ [n]

y = ∑
i∈[n]

xi

y Pi i ∈ [n]

can communicate like a party 
(later we will see that there is more nuance)



 
 

• Remember our quantifier order. Since we 
insisted    , we can define an  that 
depends upon the code of . 

• These are all computer programs, so  can 
run  “in its head” (i.e. as a subroutine)! 

• If  can trick  into thinking it’s in the real- 
world experiment, then  will output exactly 
what it would output in the real world.  can 
forward ’s output to .

∀ 𝒜 ∃ 𝒮 𝒮
𝒜

𝒮
𝒜

𝒮 𝒜
𝒜

𝒮
𝒜 𝒟

Example: -Party Sumn

x2

x3

x1

x6

x4

x5

• Missing Piece #2: how can we construct a 
simulator  that mimics he output of  for 
any  (semi-honest, one static corruption). 

𝒮 𝒜
𝒜



x2

x3

x1

x6

x4

x5

Example: -Party Sumn

Simulator 𝒮(n)
1. Emulate  in an interaction with the 

protocol. 
2. When  tries to corrupt emulated , 

corrupt  in the ideal world and learn 
its input . Make  the input of the 
emulated  before corruption occurs. 

3. Send  to  on behalf of . 
4. Receive  from  on behalf of . 
5. Use  and  to continue emulating the 

real world. 
6. When  halts, output what it does.

𝒜

𝒜 Pi
Pi
xi xi
Pi

xi ℱ𝗌𝗎𝗆 Pi

y ℱ𝗌𝗎𝗆 Pi

xi y

𝒜

x3

m2 ← ℤM

m
3

m7 = y

B

• Missing Piece #2: how can we construct a 
simulator  that mimics he output of  for 
any  (semi-honest, one static corruption). 

𝒮 𝒜
𝒜



x2

x3

x1

x6

x4

x5

x3

m2 ← ℤM

m
3

m7 = y

B

Example: -Party Sum, Ideal vs Real Worldsn

x1

x6

r ← ℤM

x2

x3

x4

x5

m 1
=

x 1
+ r mod M

m2 = x2 + m1 mod M

m
3 =

x3 + m
2 mod M m 4

= x 4
+ m 3

mod M

m5 = x5 + m4 mod M

m
6 =

x6 + m
5 mod M

m7 = m6 − r mod M

B



x2

x3

x1

x6

x4

x5

Example: -Party Sum, Ideal vs Real Worldsn

x3

m2 ← ℤM

m
3

m7 = y

B

x1

x6

r ← ℤM

x2

x3

x4

x5

m 1
=

x 1
+ r mod M

m2 = x2 + m1 mod M

m
3 =

x3 + m
2 mod M m 4

= x 4
+ m 3

mod M

m5 = x5 + m4 mod M

m
6 =

x6 + m
5 mod M

m7 = m6 − r mod M

B



x2

x3

x1

x6

x4

x5

Example: -Party Sum, Ideal vs Real Worldsn

x3

m2 ← ℤM

m
3

m7 = y

B

x1

x6

r ← ℤM

x2

x3

x4

x5

m 1
=

x 1
+ r mod M

m2 = x2 + m1 mod M

m
3 =

x3 + m
2 mod M m 4

= x 4
+ m 3

mod M

m5 = x5 + m4 mod M

m
6 =

x6 + m
5 mod M

m7 = m6 − r mod M

B

What  receives in the Real World: 𝒟

• Honest parties output:  

• Output of  (a function of its view). 

’s view if it corrupts : 

mn+1

𝒜

𝒜 Pc
(xc, mc−1, mc, mn+1)

What  receives in the Ideal World: 𝒟

• Honest parties output:  

• Output of emulated  (a fn of its view). 

Emulated ’s view if it corrupts : 

y = ∑i∈[n] xi

𝒜

𝒜 Pc
(xc, mc−1, mc, y)



• Therefore the view of  is identically 
distributed in the two worlds. 

• Therefore, 
 
 

• This holds    , regardless of 
computation power, so we have…  

Theorem 1. The sum protocol perfectly 
realizes  in the presence of a 
semi-honest adversary that statically 
corrupts up to one party.

𝒟

∀ 𝒜 ∀ 𝒟

ℱ𝗌𝗎𝗆

Example: -Party Sum, Ideal vs Real Worldsn
• Since  are determined by  

, they are distributed identically in 
both worlds. 

•  is uniformly distributed in 
both worlds. 

•  is deterministic given  and  
and thus identically distributed in 
both worlds. 

• By the correctness property of the 
protocol,  in the 
real world, which is identically 
distributed to ideal-world . 

• Therefore the view of  is identically 
distributed in the two worlds, and 
so is its output.

(x1, …, xn)
𝒟

mc−1

mc mc−1 xc

mn+1 = ∑i∈[n] xi

y

𝒜

𝒟Pr [  guesses correctly
given random world] =

1
2

What  receives in the Ideal World: 𝒟

• Honest parties output:  

• Output of emulated  (a fn of its view). 

Emulated ’s view if it corrupts : 

y = ∑i∈[n] xi

𝒜

𝒜 Pc
(xc, mc−1, mc, y)

What  receives in the Real World: 𝒟

• Honest parties output:  

• Output of  (a function of its view). 

’s view if it corrupts : 

mn+1

𝒜

𝒜 Pc
(xc, mc−1, mc, mn+1)



Take a big breath. Let it sink in. 
This will be easy for you by the End. 

Let’s generalize what we just saw.



Generalizing the Functionality
Functionality ℱ𝗌𝗎𝗆(n, M)

1. Receive  such that  
from  for every . 

2. Compute . 

3. Send  to  for every .

xi ∈ ℕ xi ≤ M/n
Pi i ∈ [n]

y = ∑
i∈[n]

xi

y Pi i ∈ [n]

• Functionalities can contain any arbitrary code. 
They can react dynamically to new instructions 
or data from parties while their computations 
are in progress, keep persistent state between 
invocations, or even communicate with  directly. 

• However, in this class we care about the above 
pattern: receive inputs from everyone, compute a 
function, deliver outputs to everyone. This is called 
Secure Function Evaluation (SFE).

𝒮

• Rather than specify every instance of this pattern 
individually, we will give a general SFE functionality. 
This is the main functionality we will care about! 

• Suppose we have  parties, and every  for  
has an input in the set  and expects an output in 
the set . 

• An -ary function  maps  inputs to  outputs. 
If the th input is in  and the th output is in , we 
denote this with .

n Pi i ∈ [n]
𝒳i

𝒴i

n f n n
i 𝒳i i 𝒴i

f : 𝒳1 × … × 𝒳n → 𝒴1 × … × 𝒴n

Functionality ℱ𝖲𝖥𝖤(n, f, 𝒳1, …, 𝒳n)

1. Receive  from  for every 
. 

2. Compute . 
3. Send  to  for every .

xi ∈ 𝒳i Pi
i ∈ [n]

(y1, …, yn) = f(x1, …, xn)
yi Pi i ∈ [n]



Generalizing the Functionality

• Functionalities can contain any arbitrary code. 
They can react dynamically to new instructions 
or data from parties while their computations 
are in progress, keep persistent state between 
invocations, or even communicate with  directly. 

• However, in this class we care about the above 
pattern: receive inputs from everyone, compute a 
function, deliver outputs to everyone. This is called 
Secure Function Evaluation (SFE).

• Rather than specify every instance of this pattern 
individually, we will give a general SFE functionality. 
This is the main functionality we will care about! 

• Suppose we have  parties, and every  for  
has an input in the set  and expects an output in 
the set . 

• An -ary function  maps  inputs to  outputs. 
If the th input is in  and the th output is in , we 
denote this with .

n Pi i ∈ [n]
𝒳i

𝒴i

n f n n
i 𝒳i i 𝒴i

f : 𝒳1 × … × 𝒳n → 𝒴1 × … × 𝒴n

Functionality ℱ𝖲𝖥𝖤(n, f, 𝒳1, …, 𝒳n)

1. Receive  from  for every 
. 

2. Compute . 
3. Send  to  for every .

xi ∈ 𝒳i Pi
i ∈ [n]

(y1, …, yn) = f(x1, …, xn)
yi Pi i ∈ [n]

• Notice that  guarantees correctness, privacy, input 
independence, and output delivery! 

• We will often say that a protocol  securely computes or 
securely evaluates . 
This usually means that  realizes . 

• More Notation: The set of bit-strings of length  is 
denoted , and the set of bit-strings of any length 
is . The empty set is , the empty string is , and 
an -ary function with unrestricted domain and range 
is denoted  

• Note: many of your homework problems will be of the 
form “Construct a protocol that securely computes f and 
prove that it is secure.” You have now seen enough to 
start solving these kinds of problems!

ℱ𝖲𝖥𝖤

π
f : 𝒳1 × … × 𝒳n → 𝒴1 × … × 𝒴n

π ℱ𝖲𝖥𝖤(n, f, 𝒳1, …, 𝒳n)

m
{0,1}m

{0,1}* Ø λ
n

f : ({0,1}*)n → ({0,1}*)n



Generalizing the Functionality

For Example, we just proved that the sum protocol securely computes 
 where each  and . 

More examples of functions that we can imagine security computing: 
• Boolean AND:    where each  and . 
• Boolean XOR:    where each  and . 
• Asymmetric functions, e.g.  where each  

and  and . It’s important which party supplies which input! 

•  where   and  is some universe. 
Q:What is the “task name” for this function? We’ve seen it before!

f(x1, …, xn) = (y, …, y) 𝒳i = [0,⌊M/n⌋ + 1] y = ∑i∈[n] xi

f(x1, …, xn) = (y, …, y) 𝒳i = {0,1} y = x1 ∧ … ∧ xn

f(x1, …, xn) = (y, …, y) 𝒳i = {0,1} y = x1 ⊕ … ⊕ xn

f(x1, …, xn) = (y1, y2, λ, …, λ) 𝒳i = {0,1}
y1 = x1 ⊕ x2 y2 = x1 ∧ x3

f(S1, S2) = (S1 ∩ S2, |S1 ∩ S2 | ) 𝒳1 = 𝒳2 = 𝒰 𝒰



Generalizing the Functionality

Functionalities can also be randomized! 
In the context of Secure Function Evaluation, this implies that there is an st 

input to f that is uniformly distributed over . This input is used as a random tape 
(i.e. a sequence of random coin flips) by the code of f. 
Usually this extra input is implicit, but sometimes it will be important to specify exactly 
which random tape was used. In this case we will write  for random tape r. 
More examples of randomized functions that we can imagine security computing: 
• Coin Tossing:  where . 
• Leader Election:  where . 
• Blind Encryption:  where  is an encryption function. 

(n + 1)
{0,1}*

f(x1, …, xn; r)

f(λ, …, λ) = (b, …, b) b ← {0,1}
f(λ, …, λ) = (i, …, i) i ← [n]

f(m, 𝗌𝗄) = (𝖤𝗇𝖼𝗌𝗄(m), λ) 𝖤𝗇𝖼



Generalizing the View of 𝒜
When  is semi-honest the corrupted parties follow the protocol instructions. 
Without loss of generality, we can assume that  always outputs everything it sees in 
the protocol. Q: why is this? 
So, what does  see in the execution of an arbitrary protocol ? 
For every , let  denote the view of , which contains 
• The input  of . 
• The random coins of , denoted . 
• The messages received by  during the protocol. 
Note that: 
• Messages sent by  are a (deterministic) function of its view at the time of sending. 
• The output of  is a function of its view at the end of the protocol.

𝒜
𝒜

𝒜 π
i ∈ [n] 𝗏𝗂𝖾𝗐i Pi

xi Pi

Pi ri

Pi

Pi

Pi



Generalizing the View of 𝒜
Suppose that  statically semi-honestly corrupts up to  parties. Let  
index the set of corrupted parties, and let  be the views 
of those parties. 
Typically,  represents single, specific execution of the protocol involving a 
specific, fixed set of random tapes for all participants. We denote the corresponding 
random variable (in which the random coins are uniformly distributed and all other 
values are derived from them as expected) using . 
Similarly, we use  to denote the output of  when the protocol ends, and 

 to denote the outputs of all parties. , then, 
is the corresponding random variable.

𝒜 t I = {i1, …, it}
𝗏𝗂𝖾𝗐I = {𝗏𝗂𝖾𝗐i1, …, 𝗏𝗂𝖾𝗐it}

𝗏𝗂𝖾𝗐I

𝖵𝖨𝖤𝖶I

𝗈𝗎𝗍𝗉𝗎𝗍i Pi
𝗈𝗎𝗍𝗉𝗎𝗍π = {𝗈𝗎𝗍𝗉𝗎𝗍𝟣, …, 𝗈𝗎𝗍𝗉𝗎𝗍n} 𝖮𝖴𝖳𝖯𝖴𝖳π



A Simplified Definition for Semi-Honest 𝒜
Definition 2. Perfect Semi-Honest Secure Function Evaluation (Simplified).

Let  such that , let  be an -ary function, 
and let  be a -party protocol. 
We say that  perfectly securely computes  in the presence of a semi-honest adversary 
that statically corrupts up to  parties if there exists a simulator algorithm  such that 
for every  of size  and every input vector  it holds that

n, t ∈ ℕ t < n f : 𝒳1 × … × 𝒳n → 𝒴1 × … × 𝒴n n
π n

π f
t 𝖲𝗂𝗆

I ⊆ [n] | I | ≤ t ⃗x ∈ 𝒳1 × … × 𝒳n

(𝖲𝗂𝗆 (I, ⃗xI, fI( ⃗x)), f( ⃗x)) ≡ (𝖵𝖨𝖤𝖶I, 𝖮𝖴𝖳𝖯𝖴𝖳π)

Simulated view of 
corrupt parties. Computed 
using corrupt party inputs 

and outputs

Real view of 
corrupt parties in the protocol.



A Simplified Definition for Semi-Honest 𝒜
Definition 2. Perfect Semi-Honest Secure Function Evaluation (Simplified).

Let  such that , let  be an -ary function, 
and let  be a -party protocol. 
We say that  perfectly securely computes  in the presence of a semi-honest adversary 
that statically corrupts up to  parties if there exists a simulator algorithm  such that 
for every  of size  and every input vector  it holds that

n, t ∈ ℕ t < n f : 𝒳1 × … × 𝒳n → 𝒴1 × … × 𝒴n n
π n

π f
t 𝖲𝗂𝗆

I ⊆ [n] | I | ≤ t ⃗x ∈ 𝒳1 × … × 𝒳n

(𝖲𝗂𝗆 (I, ⃗xI, fI( ⃗x)), f( ⃗x)) ≡ (𝖵𝖨𝖤𝖶I, 𝖮𝖴𝖳𝖯𝖴𝖳π)

Ideal computation
Output of all parties 
in real protocol



A Simplified Definition for Semi-Honest 𝒜
Definition 2. Perfect Semi-Honest Secure Function Evaluation (Simplified).

Let  such that , let  be an -ary function, 
and let  be a -party protocol. 
We say that  perfectly securely computes  in the presence of a semi-honest adversary 
that statically corrupts up to  parties if there exists a simulator algorithm  such that 
for every  of size  and every input vector  it holds that

n, t ∈ ℕ t < n f : 𝒳1 × … × 𝒳n → 𝒴1 × … × 𝒴n n
π n

π f
t 𝖲𝗂𝗆

I ⊆ [n] | I | ≤ t ⃗x ∈ 𝒳1 × … × 𝒳n

(𝖲𝗂𝗆 (I, ⃗xI, fI( ⃗x)), f( ⃗x)) ≡ (𝖵𝖨𝖤𝖶I, 𝖮𝖴𝖳𝖯𝖴𝖳π)

Identically Distributed



A Simplified Definition for Semi-Honest 𝒜
Definition 2. Perfect Semi-Honest Secure Function Evaluation (Simplified).

Let  such that , let  be an -ary function, 
and let  be a -party protocol. 
We say that  perfectly securely computes  in the presence of a semi-honest adversary 
that statically corrupts up to  parties if there exists a simulator algorithm  such that 
for every  of size  and every input vector  it holds that

n, t ∈ ℕ t < n f : 𝒳1 × … × 𝒳n → 𝒴1 × … × 𝒴n n
π n

π f
t 𝖲𝗂𝗆

I ⊆ [n] | I | ≤ t ⃗x ∈ 𝒳1 × … × 𝒳n

(𝖲𝗂𝗆 (I, ⃗xI, fI( ⃗x)), f( ⃗x)) ≡ (𝖵𝖨𝖤𝖶I, 𝖮𝖴𝖳𝖯𝖴𝖳π)

Sanity Check: if Definition 2 holds, can we build  so that the full security 
                          definition holds too with respect to ?

𝒮
ℱ𝖲𝖥𝖤



An Even Simpler Def for Deterministic f !

Definition 3. Perfect Semi-Honest Secure Deterministic Function Evaluation.

Let  such that , let  be an -ary function, 
(which does not use any randomness) and let  be a -party protocol. 
We say that  perfectly securely computes  in the presence of a semi-honest adversary 
that statically corrupts up to  parties if 
1. For every input vector  it holds that . 
2. There exists a simulator algorithm  such that for every  of size  

and every input vector  it holds that

n, t ∈ ℕ t < n f : 𝒳1 × … × 𝒳n → 𝒴1 × … × 𝒴n n
π n

π f
t

⃗x ∈ 𝒳1 × …𝒳n f( ⃗x) ≡ 𝖮𝖴𝖳𝖯𝖴𝖳π

𝖲𝗂𝗆 I ⊆ [n] | I | ≤ t
⃗x ∈ 𝒳1 × … × 𝒳n

𝖲𝗂𝗆 (I, ⃗xI, fI( ⃗x)) ≡ 𝖵𝖨𝖤𝖶I



Why only for Deterministic f ?
Consider the randomized 2-ary function  where  
along with the following 2-party protocol : 

 samples  uniformly, sends  to , and outputs .   outputs nothing.

f : (λ, λ) → (b, λ) b ← {0,1}
π

P1 b ← {0,1} b P2 b P2

Claim:  securely computes  per Definition 3. 

Proof Sketch. 

1.  where , thus  
2. Let  be defined such that: 

• If is  corrupted,  sets the random tape of  such that . 
• If is  corrupted,  sets the received message of  to be . 

      In both cases,   

π f

𝖮𝖴𝖳𝖯𝖴𝖳π = (b, λ) b ← {0,1} f(λ, λ) ≡ 𝖮𝖴𝖳𝖯𝖴𝖳π

𝖲𝗂𝗆
P1 𝖲𝗂𝗆 P1 b ← {0,1}
P2 𝖲𝗂𝗆 P2 b ← {0,1}

𝖲𝗂𝗆 (I, ⃗xI, fI( ⃗x)) ≡ 𝖵𝖨𝖤𝖶I ∎



Why only for Deterministic f ?
Consider the randomized 2-ary function  where  
along with the following 2-party protocol : 

 samples  uniformly, sends  to , and outputs .   outputs nothing.

f : (λ, λ) → (b, λ) b ← {0,1}
π

P1 b ← {0,1} b P2 b P2

But Wait! This protocol shouldn’t be secure! It leaks  when  doesn’t specify to do so! 
Under Definition 2, we consider the joint distribution of all outputs and corrupt views, 
which means that the view produced by  when  is corrupt has to be consistent 
with the output of . 
But when  is corrupt, the output of  is randomized and  doesn’t learn it, 
so the best-case scenario is that  has an error probability of ½. 
Security definitions are subtle! 
Definitions 2 and 3 are equivalent only if  is deterministic.

b f

𝖲𝗂𝗆 P2
P1

P2 P1 𝖲𝗂𝗆
𝖲𝗂𝗆

f



How Do Parties Communicate 
in the Real World?



Secure Communication

Suppose Alice wishes to send a message to Bob. We say she uses a channel.
In the real world their message must traverse a network of many computers that 
they do not own or trust. It is likely that they do not trust or even know the person 
to whom each node belongs.

m

We model this by assuming that  controls  all real-world communication 
by default.  is free to read and alter communication between honest parties. 

𝒜
𝒜

Unsurprisingly, not much can be achieved 
in this insecure channel model.

To help us make progress, we will introduce 
two more-powerful channel types.



Secure Communication

Authenticated Channels:
These channels allow the adversary to learn the content of the message, but not 
to alter it (including by silently dropping any part of it or injecting something new). 
• If  is semi-honest, this comes for free because  follows the (network) protocol! 
• If  is malicious, we can do more work to build an authenticated channel. We need 

a way to determine if  has altered messages on the wire. We’ll come back to this!

𝒜 𝒜
𝒜

𝒜

mSecure Channels:
These channels are authenticated and private. 
They allow  to learn only (an upper bound on) 
the length of . 
How to add privacy to an authenticated channel?

𝒜
m



Symmetric Encryption

We begin by giving Alice and Bob matching encryption and decryption algorithms, 
 and  respectively, which can transform the message m into a ciphertext c. 

We don’t want  to be able to decrypt, so Bob’s decryption capability must be tied 
to a secret that only he and Alice know.

𝖤𝗇𝖼 𝖣𝖾𝖼
𝒜

cm m
𝖤𝗇𝖼 𝖣𝖾𝖼

Q: Is it reasonable for this secret to be the algorithm ? 𝖣𝖾𝖼



Kerckhoff’s Principle

Phrased by Claude Shannon as: “the enemy knows the system”.

c
𝖤𝗇𝖼 𝖣𝖾𝖼

m m

We should assume all algorithm descriptions are public. We can only keep some 
small piece of agreed-upon data secret. We call this the secret key k.

k k

Q: Suppose Alice and Bob use a fixed value of k. What happens when we quantify 
     over all adversaries ? How can we get around this problem?𝒜



Symmetric-Key Encryption (SKE)

For , let  be a message space,  be a key space, and  be a ciphertext space. 
A Symmetric-Key Encryption Scheme is a trio of algorithms  such that: 
• Given security parameter , randomized key-generation algorithm  

outputs some secret key .

κ ∈ ℕ ℳκ 𝒦κ 𝒞κ
(𝖦𝖾𝗇, 𝖤𝗇𝖼, 𝖣𝖾𝖼)

1κ k ← 𝖦𝖾𝗇(1κ)
k ∈ 𝒦κ

Definition 4. Syntax for SKE

Unary representation, i.e.  ones. 
Important in the second half of the course…

κ



Symmetric-Key Encryption (SKE)

For , let  be a message space,  be a key space, and  be a ciphertext space. 
A Symmetric-Key Encryption Scheme is a trio of algorithms  such that: 
• Given security parameter , randomized key-generation algorithm  

outputs some secret key .

κ ∈ ℕ ℳκ 𝒦κ 𝒞κ
(𝖦𝖾𝗇, 𝖤𝗇𝖼, 𝖣𝖾𝖼)

1κ k ← 𝖦𝖾𝗇(1κ)
k ∈ 𝒦κ

Definition 4. Syntax for SKE

• The encryption algorithm  outputs a (possibly randomized) ciphertext 
 given a message  and key . 

• The decryption algorithm  outputs a deterministic message  
given a ciphertext  and key .

c ← 𝖤𝗇𝖼k(m)
c ∈ 𝒞κ m ∈ ℳκ k ∈ 𝒦κ

m = 𝖣𝖾𝖼k(c) m ∈ ℳκ
c ∈ 𝒞κ k ∈ 𝒦κ

Definition 5. Correctness for SKE

∀κ ∈ ℕ ∀k ∈ 𝒦κ ∀m ∈ ℳκ, 𝖣𝖾𝖼k(𝖤𝗇𝖼k(m)) = m



Security Definitions are Subtle

Earlier when we drew this picture, there was only one secret value. What was it?
c

𝖤𝗇𝖼 𝖣𝖾𝖼
m m

k k

Idea 1.  cannot learn k.𝒜

Problem.  is a valid encryption scheme under this definition.𝖤𝗇𝖼k(m) = m

Idea 2.  cannot learn m.𝒜

Problem. What if  learns half of m.𝒜



Security Definitions are Subtle
Idea 1.  cannot learn k.𝒜

Problem.  is a valid encryption scheme under this definition.𝖤𝗇𝖼k(m) = m

Idea 2.  cannot learn m.𝒜

Problem. What if  learns half of m.𝒜

Idea 3.  cannot learn any bit of m.𝒜

Problem. What if  learns  where f does not leak any individual bit (e.g. parity).𝒜 f(m)

Idea 4.  cannot learn any function of m.𝒜

Problem. This is unachievable! What if  already knows a function of m? 
                  (e.g. knows that  encrypts a day of the week. The last letter of m is always y).

𝒜
c

Idea 5.  cannot learn any new information about m.𝒜



And now it’s time to talk about 
Claude Shannon

Idea 5.  cannot learn any new information about m.𝒜
What does this mean?



CS4501 Cryptographic Protocols 
Lecture 3: Simulation, Communication

https://jackdoerner.net/teaching/#2026/Spring/CS4501


