
1. Talked about what cryptography is. 

2. Unmasked the main character of this course. 
 
 
 
 
 
 

3. Listed some real world problems where mutual 
distrust can be resolved by a trusted third party. 

4. Our goal is to emulate the trusted party using a 
protocol.

Last time in Cryptographic Protocols
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Let’s look at MPC another way
Secure Multiparty Computation means jointly computing on secret data, 
while revealing nothing about the data beyond the result. 

secret input 

x5

secret input 

x4

secret input 

x3

secret input 

x2

secret input 

x1

secret input 

x6

y = f(x1, …, x6)

In this example, only  is revealed 
The internal workings of  and the 
secret inputs  remain hidden 

y
f

{x1, …, x6}

This must be true even if some 
parties misbehave in an attempt to 
learn more than they should! 

Clarification: the code of  is public, 
but we don’t the internal state it assumes 
when it runs on inputs 

f

{x1, …, x6}



What does it mean to “reveal nothing”
Remember, a protocol includes local instructions and communication. That is, messages. 

…

secret input 

x1
secret input 

x2

Q: What is revealed to Alice about Bob’s input ?x2

A: Whatever information the messages and  convey!y

output 

y = f(x1, x2)

Q: What does it mean that the messages reveal nothing about , beyond ?x2 y
A: Using only  and , Alice could generate messages by herself that are 
     indistinguishable from the messages she generated interacting with Bob.

x1 y

Clarification: 
The fact that Alice can sample 
indistinguishable messages 
without Bob should convince 
Bob that Alice didn’t learn any 
more about  than  revealsx2 y



Let’s Run a Protocol Together 
I need two volunteers.

I am going to embarrass you.



♣♥ Matchmaking ♥♣ 
(how to go on a date with a cryptographer)

I promise the rest of the class won’t be like this.



Does this protocol produce a correct result? 
.

Yes = ♣♥ 
No = ♥♣

Yes = ♥♣ 
No = ♣♥

Yes       Yes

Yes       No 
No      Yes 
No      No

Cards 
(Before Random Rotation)

♣♥♥♥♣

♣♥♥♣♥ 
♥♣♥♥♣ 
♥♣♥♣♥

Result

The function we’re computing is AND
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The function we’re computing is AND



Does this protocol produce a correct result? 
.

Yes = ♣♥ 
No = ♥♣

Yes = ♥♣ 
No = ♣♥

Yes       Yes

Yes       No 
No      Yes 
No      No

Cards 
(Before Random Rotation)

♣♥♥♥♣

♣♥♥♣♥ 
♥♣♥♥♣ 
♥♣♥♣♥

Result

2 ♥ together

Yes

No 
No 
No

The function we’re computing is AND



What can            and           learn from this? 
.

Yes = ♣♥ 
No = ♥♣

Yes = ♥♣ 
No = ♣♥

Yes       Yes

Yes       No 
No      Yes 
No      No

Cards 
(Before Random Rotation)

♣♥♥♥♣

♣♥♥♣♥ 
♥♣♥♥♣ 
♥♣♥♣♥

Result

Yes

No 
No 
No

Rotations of Each Other 
Indistinguishable after random rotation!



What can            and           learn from this? 
.

Yes = ♣♥ 
No = ♥♣

Yes = ♥♣ 
No = ♣♥

Yes       Yes

Yes       No 
No      Yes 
No      No

Cards 
(Before Random Rotation)

♣♥♥♥♣

♣♥♥♣♥ 
♥♣♥♥♣ 
♥♣♥♣♥

Result

Yes

No 
No 
No

As promised, they learn only the result. 
We proved that the protocol is secure.



What can            and           learn from this? 
.

Question 1: what happens if doesn’t rotate the deck randomly?

Question 2: what happens if reorders the cards instead of rotating.

Question 3: what happens if inputs YES regardless of her intention.

Why doesn’t the last one violate the security of the protocol?



A More Nuanced View of Security



The Setting
•  parties, . You can just think of them as computers. 

Technically modeled as Interactive Turing Machines (ITMs).
n P1, …, Pn

• Each  has private input . For now they all want the same output .Pi xi y
• The parties wish to compute a known function .y = f(x1, …, xn)

• The protocol performing the computation must achieve certain security properties, 
even if some parties collude to attack the protocol.

• This is modeled by introducing an external adversary  
that corrupts some parties and controls their actions.

𝒜



Security Properties (Auction Example)
• Correctness:  can’t bid using a bid that isn’t the highest bid.𝒜

• Privacy:  learns the value of the highest bid, the identity of the highest bidder, 
and nothing else.

𝒜

• Independence of Inputs:  cannot bid $1 more than the 
highest honest bid.

𝒜

• Fairness:  can’t cause the protocol to abort if its bid 
isn’t the highest (i.e. after learning the output).

𝒜

• Guaranteed Output Delivery:  can’t cause the 
protocol to abort at all (this is stronger than 
fairness and eliminates DoS attacks).

𝒜



• Guaranteed Output Delivery: All honest parties learn the output.

Security Properties (More Generally)
• Correctness: Corrupt parties can only influence the output by choosing their inputs.

• Privacy: Only the output is learned (nothing else).

• Independence of Inputs: Parties cannot choose their inputs 
as functions of other parties’ inputs.

• Fairness: If one party learns the output, then all parties do.

y = f(x1, …, x6)

These aren’t formal or rigorous definitions. 
We might not want all of them all of the time. 
And we could imagine many more security properties!



There’s something else missing from the picture too…

We need to revisit our definition of security!

So far I have told you that security is related to  being  
able to emulate the protocol messages on it’s own. It’s 
intuitive how that’s related to privacy, but can it possibly 
imply guaranteed output or even correctness?

𝒜

• Guaranteed Output Delivery: All honest parties learn the output.

Security Properties (More Generally)
• Correctness: Corrupt parties can only influence the output by choosing their inputs.

• Privacy: Only the output is learned (nothing else).

• Independence of Inputs: Parties cannot choose their inputs 
as functions of other parties’ inputs.

• Fairness: If one party learns the output, then all parties do.

y = f(x1, …, x6)



Another Protocol Example 
No embarrassment this time.



• Let  be some positive integer fixed a priori. 

• Each  has private input . 

• They wish to compute .

M

Pi xi ≤ M/n

y = ∑
i∈[n]

xi

x1

x6

Example: -Party Sumn

Notation

[n] = {1,…, n} [n, m] = {n, …, m}

 is the integers modulo . 
      For our purposes, .
ℤM M

ℤM = [0,M − 1]

 where  is a distribution means  is a 
      random var distributed according to 
x ← D D x

D

 where  is a set means  is sampled  
      from the uniform distribution over 
x ← S S x

S

r ← ℤM

x2

x3

x4

x5

m 1
= x 1

+ r mod M

m2 = x2 + m1 mod M

m
3 = x3 + m

2 mod M m 4
= x 4

+ m 3
mod M

m5 = x5 + m4 mod M

m
6 = x6 + m

5 mod M

y = m6 − r mod M

In the future we will omit the  after every 
operation and just say “they work modulo ”

modM
M



• Let , so  M = 100 xi ≤ 16

An Instance with 6 Parties

r = 85
x1 = 3

x2 = 6

x3 = 9

x4 = 3

x5 = 2

x6 = 8

m 1
= 88

m2 = 94

m
3 = 3 m 4

= 6

m5 = 8

m
6 = 16

y = 31

• Suppose one party is “honest but curious” 
(We call this a semi-honest adversary)  

•  learns 𝒜 m2 = x2 + x1 + r

•  

• In other words, the distribution of 
 is independent of  and . 

•  could sample  on its own. 

∀i ∈ ℤM Pr[m2 = i] = 1/100

m2 x1 x2

𝒜 m2 ← ℤM

• So the protocol is private.



An Instance with 6 Parties
• Let , so  M = 100 xi ≤ 16

• Suppose one party is “honest but curious” 
(We call this a semi-honest adversary)  

•  learns 𝒜 m2 = x2 + x1 + r

•  

• In other words, the distribution of 
 is independent of  and . 

•  could sample  on its own. 

∀i ∈ ℤM Pr[m2 = i] = 1/100

m2 x1 x2

𝒜 m2 ← ℤM
r = 85
x1 = 3

x2 = 6

x3 = 9

x4 = 3

x5 = 2

x6 = 8

m 1
= 88

m2 = 94

m
3 = 3 m 4

= 6

m5 = 8

m
6 = 16

y = 31

• So the protocol is private.

• But what if two parties are corrupted?



What can we take from this? 
Security is not a property of the protocol alone. 

It also depends upon the adversarial model.



Option 1: Property Based 

• Define a list of security requirements for the task to be accomplished 
(e.g. privacy, fairness, guaranteed output) 

• Give a unique mathematical formalization for each property. 
Prove each property individually. 

• For simple foundational primitives like Encryption or Digital Signatures, this is the 
kind of security definition we usually use. Usually only 1-2 properties we care about. 
(e.g. Signatures require the property of Unforgeability)

• For complex tasks, how do we know if we have covered all of our concerns? 
Proving many properties is also a huge chore. 

How to Define Security

• Deeper Problem: when we proved the properties of protocol A, we considered it 
on its own. Will it still have those properties when we use it to build protocol B?



Option 2: the simulation (a.k.a. real-ideal) paradigm 

• Consider the real world in which the protocol is executed. 
Parties have inputs, communicate with each other, produce outputs

• Consider an ideal world in which an additional trusted party exists. 
The trusted party helps the other parties carry out the computation. 
In this world security holds by definition, i.e. we define this world to be secure. 

How to Define Security

• We say that the real protocol is secure if whatever an adversary can achieve by 
attacking it can also be achieved by attacking the ideal computation involving 
the trusted party. 

• Thus the behavior of the trusted party captures all properties of the protocol at 
once, not just the function it computes. We call this trusted party an ideal 
functionality. When a protocol is secure with respect to some functionality, we 
say that it realizes the functionality. 



1. Each  sends its input  to the ideal functionality ( ) 

2.  computes . 

3.  sends  to every party, and they output it.

Pi xi ℱ

ℱ y = f(x1, …, xn)

ℱ y

The Ideal World

x1

x6x2

x3

x4

x5



1. The parties  run a protocol  on inputs  

2. When  terminates, the parties output .  

(P1, …, Pn) π (x1, …, xn)

π y

The Real World

x1

x6x2

x3

x4

x5



For every real adversary, and ideal adversary

the Simulator 𝒮 the Adversary 𝒜

Goal of : produce output 
indistinguishable from  

𝒮
𝒜



Is  is Indistinguishable from ? Who will Judge?𝒮 𝒜

the Simulator 𝒮 the Adversary 𝒜the Distinguisher 𝒟



Is  is Indistinguishable from ? Who will Judge?𝒮 𝒜

the Simulator 𝒮 the Adversary 𝒜the Distinguisher 𝒟

the Distinguisher 𝒟

• Interacts with one of the worlds and attempts to 
determine which one by running an experiment.

• Chooses input for all parties. Cannot “look into” the world.

• Receives outputs from all parties and either  or . 𝒮 𝒜

• Guesses whether the world is ideal or real.



Is  is Indistinguishable from ? Who will Judge?𝒮 𝒜

the Simulator 𝒮 the Adversary 𝒜the Distinguisher 𝒟

Finally, How to Define Simulation-Based Security!

The protocol  realizes the ideal functionality  in 
the presence of some class of adversaries if:

π ℱ

  in the class∀ 𝒜  ∃ 𝒮 such that  ∀ 𝒟
 is very smallPr[  guesses correctly]𝒟

(we will define what very small means later)

≈



The Simulation-Based Security Paradigm

the Simulator 𝒮 the Adversary 𝒜the Distinguisher 𝒟

≈



Sanity Check: Correctness?

the Simulator 𝒮 the Adversary 𝒜the Distinguisher 𝒟

≈



Sanity Check: Correctness?

the Simulator 𝒮 the Adversary 𝒜the Distinguisher 𝒟

≈



Sanity Check: Privacy?

the Simulator 𝒮 the Adversary 𝒜the Distinguisher 𝒟

≈



Sanity Check: Input Independence?

the Simulator 𝒮 the Adversary 𝒜the Distinguisher 𝒟

≈



Sanity Check: Fairness?

the Simulator 𝒮 the Adversary 𝒜the Distinguisher 𝒟

≈



Sanity Check: Guaranteed Output Delivery?

the Simulator 𝒮 the Adversary 𝒜the Distinguisher 𝒟

≈



This is complicated. Why do we do it?
• This way of defining security is extremely general. We can capture any 

computational task and security behavior using the code of the functionality.

• While the model is complicated, the guarantee is simple to understand: 
Just imagine a trusted party performing the task that you desire.

• The functionality gives a complete picture of the security that the protocol 
achieves. Nothing is accidentally missed.

• Supports composition: use functionalities as parties in larger protocols. 
Reason about security in a modular and reusable fashion!

≈



Specifying the Details
We’ve met the players, but in order to understand what we’re achieving, we 
must know more about them.

• Adversarial Model: what kinds of behavior and interaction with the system 
   do we want to protect against? E.g. who can be corrupted? 

• Security Type: how strong should our protection be? How much computing 
   power does  have? How much better than random is the guesswork of  
   allowed to be? 

𝒟 𝒟

• Network Model: Who is connected to who in the real world? Are those  
   connections private? Do the parties have a shared clock? Is there a way to 
   broadcast reliably? 

• Functionality: what do we want to compute, and with what IO behavior? 
   A functionality can also capture vulnerabilities by directly taking inputs 
   from or leaking information to the simulator .𝒮



Facets of Adversarial Models

Adversarial Power: 
• Unbounded (i.e. “all-powerful”):  has unlimited computing power. 

Can break any cryptographic assumption. We can still achieve security using 
information theory! 

• Computationally Bounded:  runs in Probabilistic Polynomial Time (PPT).

𝒜

𝒜

Behavior: 
• Semi-honest (a.k.a. Passive): corrupted parties follow the protocol honestly, but 

share their internal state with , who tries to learn more than is allowed. 
• Malicious (a.k.a. Active): corrupted parties can deviate from the protocol 

instructions in arbitrary ways.  coordinates their actions. 

𝒜

𝒜



Corruption Strategy: 
• Static: corruptions are determined at the beginning of the experiment. 

Honest parties always stay honest. 
• Adaptive:  can dynamically corrupt parties during the protocol (security 

is very hard to achieve in this setting).
𝒜

Behavior: 
• Semi-honest (a.k.a. Passive): corrupted parties follow the protocol honestly, but 

share their internal state with , who tries to learn more than is allowed. 
• Malicious (a.k.a. Active): corrupted parties can deviate from the protocol 

instructions in arbitrary ways.  coordinates their actions. 

𝒜

𝒜

Adversarial Power: 
• Unbounded (i.e. “all-powerful”):  has unlimited computing power. 

Can break any cryptographic assumption. We can still achieve security using 
information theory! 

• Computationally Bounded:  runs in Probabilistic Polynomial Time (PPT).

𝒜

𝒜

Facets of Adversarial Models



Security Types

Statistical: 
•  and  have unbounded computational power. 
• The real and ideal experiments must be statistically indistinguishable. 

(Their statistical distance must be negligible relative to the security parameter)

𝒟 𝒜

Perfect: 
•  and  have unbounded computational power. 
• The real and ideal experiments must be identically distributed from the 

perspective of . 
•  must be able to do no better than a random guess.

𝒟 𝒜

𝒟
𝒟



Statistical: 
•  and  have unbounded computational power. 
• The real and ideal experiments must be statistically indistinguishable. 

(Their statistical distance must be negligible relative to the security parameter)

𝒟 𝒜

Perfect: 
•  and  have unbounded computational power. 
• The real and ideal experiments must be identically distributed from the 

perspective of . 
•  must be able to do no better than a random guess.

𝒟 𝒜

𝒟
𝒟

Computational: 
•  and  are efficient. They run in PPT. 
• We can make cryptographic assumptions. That is, we can assume certain 

computational problems can't be solved by  or . 
• The real and ideal experiments must be computationally indistinguishable. This 

means that the outputs of  are statistically close when it interacts with the 
real and ideal experiments, even though the experiments themselves might 
have statistically far distributions.

𝒟 𝒜

𝒟 𝒜

𝒟



We need to formalize all of this 
mathematically! 

 
But first, let’s look at what we will achieve in this class.



The “Fundamental Theorem” of Multiparty Computation 
 

Every computable function  can be securely computed 
(even if  parties are corrupted)

f
n − 1

The “Fundamental Bound” of Multiparty Computation 
 

If a majority of parties are maliciously corrupted, there exist 
functionalities  that cannot be realized regardless 

of what assumptions are made about the adversary’s power.
ℱ



Assuming an Honest Majority
Let  be the number of parties and let  be the number of corruptionsn t

Behavior Corruption Bound Network Assumptions Crypto Assumptions Security

Semi-Honest private, authenticated 
point-to-point channels — Perfect

Malicious private, authenticated 
point-to-point channels — Perfect

Malicious private, authenticated 
p2p channels + broadcast — Statistical

t < n/2

t < n/2

t < n/3



Assuming a Dishonest Majority
Let  be the number of parties and let  be the number of corruptionsn t

Behavior Corruption Bound Network Assumptions Crypto Assumptions Security

Semi-Honest authenticated 
point-to-point channels Oblivious Transfer Computational

Malicious authenticated 
p2p channels + broadcast Oblivious Transfer Computational 

(no fairness or GOD)

t < n

t < n



Syllabus (tentative):

Overarching Questions: 
How do we characterize unknown adversaries? How do we formalize intuitive security notions? 

What kinds computation can we perform securely in each setting?

Oblivious Transfer 
GMW protocol for  a dishonest majority 

Yao’s protocol for two parties 
Fully Homomorphic Encryption

Coin Tossing 
Zero-Knowledge Proofs 

GMW Compiler  
Byzantine Agreement + Broadcast

Verifiable Secret Sharing 
BGW protocol for honest supermajority

Secret Sharing 
BGW protocol for an honest majority

Part 1: Information-theoretic techniques. 
Adversaries with unbounded power

Part 2: Cryptographic techniques. 
Adversaries with bounded power

Semi-honest 
Adversaries: 
follow the rules 
of the protocol

Malicious 
Adversaries: 
break the rules 
of the protocol

A taxonomy of adversaries; a variety of techniques
(now the taxonomy should be clearer than it was before)
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