Last time in Cryptographic Protocols

1. Talked about what cryptography is.

2. Unmasked the main character of this course.

L Q)
Cryptographlc ﬂ
Multiparty ’ Protocols

Computation

3. Listed some real world problems where mutual
distrust can be resolved by a trusted third party.

4. QOur goal is to emulate the trusted party using a
protocol.

CS4501 Cryptographic Protocols
Lecture 2: Adversaries and Simulation

https://jackdoerner.net/teaching/#2026/Spring/CS4501

Let’s look at MPC another way

Secure Multiparty Computation means jointly computing on secret data,
while revealing nothing about the data beyond the result.

secret input

In this example, only y is revealed secret input / ‘.
The internal workings of f and the X5 Z N A cret inpu
secret inputs {x, ..., Xx;} remain hidden @\\) @\\) X3

This must be true even if some
parties misbehave in an attempt to

learn more than they should! %

secret input

Clarification: the code of fis public, secret input Xy

: . X
but we don’t the internal state it assumes 6
when it runs on inputs {x, ..., X}

secret input

X1

What does it mean to “reveal nothing”

Remember, a protocol includes local instructions and communication. That is, messages.

Clarification:

secret input The fact that Alice can sample
12 indistinguishable messages
without Bob should convince

Q: What is revealed to Alice about Bob’s input x,? Bob that Alice didn't learn any
more about x, than y reveals

A: Whatever information the messages and y convey!
Q: What does it mean that the messages reveal nothing about x,, beyond y?

A: Using only x; and y, Alice could generate messages by herself that are
indistinguishable from the messages she generated interacting with Bob.

Let’s Run a Protocol Together

I need two volunteers.

[am going to embarrass you.

- - ;;. o - > el
44 o8, AMatchmaking’ @, ¢

(how to go on a date with a cryptographer)
te s LR o

.
: .
o & > . Al
. |) .
.
' ’ . b .
: ’ . o A
-] . . » | 3
’ » -~)
* \ \ ' ' ; | .5« . . ‘ ” -J. . »
. ‘ : A - ® . » .?‘ ‘ > '
. T R . p
, K - - '..‘)
) _ - - ° . v 4
s A

!

I promise the rest of the class won’t be like this.

Does this protocol produce a correct result?

The function we're computing is AND

7
’@\\) Cards

7
@\\) (Before Random Rotation)
Yes

Result

Yes = ¥

No = Ve Yes HVVV L
Yes No VYLV
No Yes VHVVH

No No VHVHV

Does this protocol produce a correct result?

The function we're computing is AND

%)
//77’) Cards
@\\) @ (Before Random Rotation) Result
Yes = oW
NO = Vb Yes Yes ** Yes
Yes No svway o]
No Yes | '

No No VHVHV

Does this protocol produce a correct result?

The function we're computing is AND

7 Cards
@\\) @ (Before Random Rotation) Result

Yes Yes VYV Yes

Yes No VYRV
No Yes VERVYE -\
No No VHhVHVY +—

i 2 ¥ together f’

and @ learn from this?

7 Cards
@\\) @ (Before Random Rotation) Result

Yes Yes VYV Yes

Yes No VYRV 4+ No
No Yes VVWVd 4. No
No No VehVeh¥ No

Rotations of Each Other
i Indistinguishable after random rotation!

What can @A\) and learn from this?

o

7% \
7 Cards
@\\) @ (Before Random Rotation) Result
Yes = ¥
No = Wdb Yes Yes VYV Yes
Yes No o VVHVY No
No Yes V&HhVVLH No
No No VHhVHV No

As promised, they learn only the result.
We proved that the protocol is secure.

What can %} and learn from this?

Y e
//
Question 1: what happens if %) doesn’t rotate the deck randomly?

J

Question 2: what happens if \\) reorders the cards instead of rotating.

si\\\'

J
\ inputs YES regardless of her intention.

Question 3: what happens if

Why doesn’t the last one violate the security of the protocol?

A More Nuanced View of Security

The Setting

o n parties, P, ..., P, . You can just think of them as computers.
Technically modeled as Interactive Turing Machines (ITMs).

o 'The parties wish to compute a known function y = f(x, ..., x).
o Each P has private input x.. For now they all want the same output y.

o The protocol performing the computation must achieve certain security properties,
even if some parties collude to attack the protocol.

o This is modeled by introducing an external adversary </

that corrupts some parties and controls their actions. /‘ |
A

Security Properties (Auction Example)

Correctness: </ can’t bid using a bid that isn’t the highest bid.

Privacy: </ learns the value of the highest bid, the identity of the highest bidder,
and nothing else.

Independence of Inputs: &/ cannot bid $1 more than the

highest honest bid.

Fairness: &/ can't cause the protocol to abort if its bid
isn’t the highest (i.e. after learning the output).

Guaranteed Output Delivery: &/ can’t cause the
protocol to abort at all (this is stronger than
fairness and eliminates DoS attacks).

Security Properties (More Generally)

o Correctness: Corrupt parties can only influence the output by choosing their inputs.

e Privacy: Only the output is learned (nothing else).

o Independence of Inputs: Parties cannot choose their inputs
as functions of other parties’ inputs.

o Fairness: If one party learns the output, then all parties do.

o Guaranteed Output Delivery: All honest parties learn the output.

These aren’t formal or rigorous definitions.
We might not want all of them all of the time.
And we could imagine many more security properties!

Security Properties (More Generally)

o Correctness: Corrupt parties can only influence the output by choosing their inputs.

e Privacy: Only the output is learned (nothing else).

o Independence of Inputs: Parties cannot choose their inputs
as functions of other parties’ inputs.

o Fairness: If one party learns the output, then all parties do.

o Guaranteed Output Delivery: All honest parties learn the output.

So far [have told you that security is related to </ being
able to emulate the protocol messages on it's own. It’s
intuitive how that’s related to privacy, but can it possibly
imply guaranteed output or even correctness?

We need to revisit our definition of security!

There’'s something else missing from the picture too...

Another Protocol Example

No embarrassment this time.

Example: n-Party Sum

o Let M be some positive integer fixed a priori. N . @06“\
v X@ 4 X(wb
. . 9’?20 >
o Each P, has private input x; < M/n. %f/) @ \“‘“j
= | - N
7 7
They wish to compute y = Z X.. 2 %) %}
i€[n] | |
mz—x2+m1modM(y =mg—r mod M)m5—x5+m4m0dM
Notation 4

7\ /
[n] =1{1,...,n} In,m| = {n,...,m} @ @
X5 =N Xe
7, 1s the integers modulo M. \ %} ‘/%

For our purposes, Z,, = [0.M — 1]. N

x < D where D is a distribution means x is a o~ e 7, Ke
random var distributed according to D

x < S where S is a set means x is sampled

, SRee s In the future we will omit the mod M atter every
from the uniform distribution over S

operation and just say “they work modulo //”

An Instance with 6 Parties

e Let M = 100,50 x; < 16

« Suppose one party is “honest but curious”
(We call this a semi-honest adversary)

o o/ learnsm, =x,+x, +7r
o Vie Z,, Prlm, =1i] = 1/100

e In other words, the distribution of
m, is independent of x; and x..

o o/ could sample m, < Z,, on its own.

e So the protocol is private.

An Instance with 6 Parties

e Let M = 100,50 x; < 16

« Suppose one party is “honest but curious”
(We call this a semi-honest adversary)

o o/ learnsm, =x,+x, +7r
o Vie Z,, Prlm, =1i] = 1/100

e In other words, the distribution of
m, is independent of x;, and x..

o o/ could sample m, < Z,, on its own.

e So the protocol is private.

o But what if two parties are corrupted?

What can we take from this?

Security is not a property of the protocol alone.
It also depends upon the adversarial model.

How to Define Security

Option 1: Property Based

Define a list of security requirements for the task to be accomplished
(e.g. privacy, fairness, guaranteed output)

Give a unique mathematical formalization for each property.
Prove each property individually.

For simple foundational primitives like Encryption or Digital Signatures, this is the
kind of security definition we usually use. Usually only 1-2 properties we care about.
(e.g. Signatures require the property of Unforgeability)

For complex tasks, how do we know if we have covered all of our concerns?
Proving many properties is also a huge chore.

Deeper Problem: when we proved the properties of protocol A, we considered it
on its own. Will it still have those properties when we use it to build protocol B?

How to Define Security

Option 2: the simulation (a.k.a. real-ideal) paradigm

Consider the real world in which the protocol is executed.
Parties have inputs, communicate with each other, produce outputs

Consider an ideal world in which an additional trusted party exists.
The trusted party helps the other parties carry out the computation.
In this world security holds by definition, i.e. we define this world to be secure.

We say that the real protocol is secure if whatever an adversary can achieve by
attacking it can also be achieved by attacking the ideal computation involving
the trusted party.

Thus the behavior of the trusted party captures all properties of the protocol at
once, not just the function it computes. We call this trusted party an

. When a protocol is secure with respect to some functionality, we
say that it realizes the functionality.

The Ideal World

1. Each P, sends its input x. to the ()
2. computes y = f(x, ..., x,).

3. sends y to every party, and they output it.

The Real World

1. The parties (P, ..., P,) run a protocol 7 on inputs (x, ..., x)

2. When 7 terminates, the parties output y.

For every real adversary, and ideal adversary

Goal of &': produce output
indistinguishable from </

L

the Simulator & the Adversary &/

Is & is Indistinguishable from </? Who will Judge?

the Simulator & the Distinguisher &

the Distinguisher &

o Interacts with one of the worlds and attempts to
determine which one by running an experiment.

R e Chooses input for all parties. Cannot “look into” the world.

. @ o Receives outputs from all parties and either & or /.

e Guesses whether the world is ideal or real.

the Simulator & the Distinguisher &

Is & IS

the Simulator &

Finally, How to Define Simulation-Based Security!

The protocol 7 realizes the ideal functionality in
the presence of some class of adversaries if:

V o/ in the class 4 & such that VY
Pr[& guesses correctly] is very small

(we will define what very small means later)

the Distinguisher &

The Simulation-Based Security Paradig

- N - N
‘— .. ‘— ..

\
\ g N \ g ~§

the Simulator & the Distinguisher &

Sanity Check: Correctness?

the Simulator & the Distinguisher &

Sanity Check: Correctness?

the Simulator & the Distinguisher &

Sanity Check: Privacy?

-

the Simulator & the Distinguisher &

Sanity Check: Input Independence?

g
\

the Simulator & the Distinguisher &

- a, -,
\ N \ g N

Sanity Check: Fairness?

the Simulator & the Distinguisher &

-, - e,
N N

Sanity Check: Guaranteed Output Delivery?

g

the Simulator & the Distinguisher & the Adversary </

This is complicated. Why do we do it?

o This way of defining security is extremely general. We can capture any
computational task and security behavior using the code of the

o While the model is complicated, the guarantee is simple to understand:
Just imagine a performing the task that you desire.

o The gives a complete picture of the security that the protocol
achieves. Nothing is accidentally missed.

o Supports composition: use functionalities as parties in larger protocols.
Reason about security in a modular and reusable fashion!

Specifying the Details

We’ve met the players, but in order to understand what we’re achieving, we
must know more about them.

. what do we want to compute, and with what IO behavior?
A functionality can also capture vulnerabilities by directly taking inputs
from or leaking information to the simulator &'.

o Adversarial Model: what kinds of behavior and interaction with the system
do we want to protect against? E.g. who can be corrupted?

e Security Type: how strong should our protection be? How much computing
power does & have? How much better than random is the guesswork of &

allowed to be?

e Network Model: Who is connected to who in the real world? Are those
connections private? Do the parties have a shared clock? Is there a way to

broadcast reliably?

Facets of Adversarial Models

Behavior:

o Semi-honest (a.k.a. Passive): corrupted parties follow the protocol honestly, but
share their internal state with &/, who tries to learn more than is allowed.

o Malicious (a.k.a. Active): corrupted parties can deviate from the protocol
instructions in arbitrary ways. &/ coordinates their actions.

Adversarial Power:

e Unbounded (i.e. "all-powerful”): o/ has unlimited computing power.
Can break any cryptographic assumption. We can still achieve security using

information theory!
e Computationally Bounded: </ runs in Probabilistic Polynomial Time (PPT).

Behavior:

o Semi-honest (a.k.a. Passive): corrupted parties follow the protocol honestly, but
share their internal state with &/, who tries to learn more than is allowed.

o Malicious (a.k.a. Active): corrupted parties can deviate from the protocol
instructions in arbitrary ways. &/ coordinates their actions.
Adversarial Power:

e Unbounded (i.e. "all-powerful”): o/ has unlimited computing power.

Can break any cryptographic assumption. We can still achieve security using
information theory!

e Computationally Bounded: </ runs in Probabilistic Polynomial Time (PPT).

Corruption Strategy:

e Static: corruptions are determined at the beginning of the experiment.
Honest parties always stay honest.

o Adaptive: o/ can dynamically corrupt parties during the protocol (security
is very hard to achieve in this setting).

Security Types

Perfect:
o & and < have unbounded computational power.

o The real and ideal experiments must be identically distributed from the
perspective of .

o & must be able to do no better than a random guess.

Statistical:
o & and &/ have unbounded computational power.

o The real and ideal experiments must be statistically indistinguishable.
(Their statistical distance must be negligible relative to the security parameter)

rerrccl.
e & and &/ have unbounded computational power.

o The real and ideal experiments must be identically distributed from the
perspective of 4.

o < must be able to do no better than a random guess.

Statistical:
e & and </ have unbounded computational power.
o The real and ideal experiments must be statistically indistinguishable.
(Their statistical distance must be negligible relative to the security parameter)

Computational:
o & and are efficient. They run in PPT.

o We can make cryptographic assumptions. That is, we can assume certain
computational problems can't be solved by & or /.

o The real and ideal experiments must be computationally indistinguishable. This
means that the outputs of & are statistically close when it interacts with the
real and ideal experiments, even though the experiments themselves might
have statistically far distributions.

We need to formalize all of this
mathematically!

But first, let’s look at what we will achieve in this class.

The "Fundamental Theorem” of Multiparty Computation

Every computable function f can be securely computed
(even if n — 1 parties are corrupted)

The "Fundamental Bound” of Multiparty Computation

If a majority of parties are maliciously corrupted, there exist
functionalities that cannot be realized regardless
of what assumptions are made about the adversary's power.

Assuming an Honest Majority

Let n be the number of parties and let # be the number of corruptions

Behavior Corruption Bound Network Assumptions Crypto Assumptions Securit
P P YP P)4
Semi-Honest t < nl?2 P 1jlvate, auj[hentlcated — Perfect
point-to-point channels
Malicious < n/3 P r.1vate, aujchentlcated — Perfect
point-to-point channels
Malicious t<nl2 private, authenticated — Statistical

p2p channels + broadcast

@
(&

\Q

&

Assuming a Dishonest Majority

Let n be the number of parties and let # be the number of corruptions

Behavior Corruption Bound Network Assumptions Crypto Assumptions Security
Semi-Honest I<n poini?ﬁ?&iifﬁgmnels Oblivious Transfer Computational
- authenticated .. Computational
I<n
Malicious p2p channels + broadcast Oblivious Transter (no fairness or GOD)

Syllabus (tentative):

A taxonomy of adversaries; a variety of techniques
(now the taxonomy should be clearer than it was before)

Part 1: Information-theoretic techniques. Part 2: Cryptographic techniques.

Adversaries with unbounded power Adversaries with bounded power
Semi-honest Secret Sharing Oblivious Transfer
Adversaries: BGW protocol for an honest majority GMW protocol for a dishonest majority
follow the rules Yao's protocol for two parties
of the protocol Fully Homomorphic Encryption
Maliciou§ Verifiable Secret Sharing Coin Tossing
Adversaries: BGW protocol for honest supermajority Zero-Knowledge Proofs
break the rules GMW Compiler
of the protocol Byzantine Agreement + Broadcast

Overarching Questions:
How do we characterize unknown adversaries? How do we formalize intuitive security notions?
What kinds computation can we perform securely in each setting?

CS4501 Cryptographic Protocols
Lecture 2: Adversaries and Simulation

https://jackdoerner.net/teaching/#2026/Spring/CS4501

