
CS 6222 Graduate Cryptography September 23, 2025

Lecture 9: One-Way Functions and Factoring

Lecturer: Jack Doerner Scribe: Matthew Lucio

1 Topics Covered

• Putting Things Into Perspective

• Three Flavors of One-Way Functions

• Weak One-Way Functions from the Hardness of Factoring

• Hardness Amplification Preview

2 Putting Things Into Perspective

Last time we proved PRG ⇒ PRF . Now, we will introduce One Way Functions (OWF),
which are the fundamental primitive of modern cryptography. This will provide a bridge
from concrete mathematical assumptions, which concern specific mathematical functions
that you can implement, to the general definitions we discussed before, which then give us
IND-CPAsecure encryption.

The diagram below illustrates the implications we will show over the next few classes,
as well as those we have already proven. Note that there are other implications we will not
prove. Most notably, H̊astad et al. [2] proved that we can construct a PRG from any OWF,
but the proof is rather intense, so we will not go through it in class.

EAV1 EAV INDCPA INDCCA1 INDCCA2

PRFPRG

(Strong) OWF

Weak OWF

Factoring (is hard)

Injective OWF Family

RSA (is hard) Discrete Log (is hard)

OWP

3 One Way Functions in Three Flavors

Unlike PRG and PRF, we don’t need any concept of computational indistinguishability.
Instead, we are bridging the gap from fundamental math to cryptography.

Lecture 9, Page 1

Definition 1 (Worst-Case OWF) A function f : {0, 1}∗ → {0, 1}∗ is a worst-case one-
way function if

1. f is PPT

2. ∀ NUPPT A, ∃n ∈ N, x ∈ {0, 1}n such that

Pr[f(x′) = f(x) : x′ ← A(1n, f(x))] < 1

Note that functions of the above type certainly exist if P ̸= NP , but there is no
guarantee that we can easily find the input x that is hard to invert! Unfortunately, we do
not know how to use such one-way functions to build cryptography. We need a stronger
notion of one-wayness. Note also that we must give the adversary the security parameter
in this game, because there is no guarantee that f outputs any particular number of bits.

Definition 2 (Strong (Average-Case) OWF) A function f : {0, 1}∗ → {0, 1}∗ is a
strong OWF if

1. f is PPT

2. ∀ NUPPT A ∃ negligible function ε s.t. ∀n ∈ N

Pr[f(x′) = f(x) : x← {0, 1}n, x′ ← A(1n, f(x))] < ε(n)

This function is useful for cryptography, but unfortunately we don’t know how to con-
struct it directly from concrete mathematical assumptions. For example, we think it’s hard
to factor the product of two large primes. But if we suppose I sample two random numbers
x and y (not necessarily prime) and give the product z to the adversary to factor, 3

4 of the
time one of the inputs will be an even number, and the adversary can trivially factor z into 2
and z

2 . We need to capture this definition of hardness: many inputs produce easy-to-invert
outputs, yet it is also easy to find inputs that produce hard-to-invert outputs.

Definition 3 (Weak (Average-Case) OWF) A function f : {0, 1}∗ → {0, 1}∗ is a weak
OWF if

1. f is PPT

2. ∃ polynomial µ s.t. ∀ NUPPT A ∃ n0 ∈ N s.t. ∀n > n0

Pr[f(x′) = f(x) : x← {0, 1}n, x′ ← A(1n, f(x))] < 1− 1

µ(n)

Notice that in the above definition, the probability that the adversary inverts f actually
approaches 1 as n increases. The main thing is that it doesn’t approach 1 too fast: in
particular, it is not overwhelming. In a future class, we will prove that Weak OWFs ⇒
Strong OWFs. The other direction is trivial.

Lecture 9, Page 2

4 Weak OWFs from the Hardness of Factoring

Our first putative one-way function is a function you have likely seen before.

Definition 4 (Multiplication OWF)

fmult : x, y 7→
{

1 if x = 1 ∨ y = 1
x · y otherwise

Notice that the first of the two cases in the above function ensures that (1, z) is never a
valid preimage of the output z ̸= 1 under f .

Definition 5 (The Factoring Assumption) Let Πn = {q ∈ N : q < 2n and q is prime}.
∀ NUPPT A ∃ negligible ε s.t.

Pr[A(N) ∈ {p, q} : p, q ← Πn, N := p · q] < ε(n)

In other words, the probability that a NUPPT adversary can factor a product of two
random primes is negligible. Obviously real-world factoring algorithms exist—the problem
has been studied in some guise since at least Eratosthenes—so how do they compare to
this bound? How hard is factoring, concretely, when the best currently-known algorithms
are used? The most efficient algorithm with a rigorously proven1 running time can factor
biprimes in time 2O(

√
nlogn) [3]; this result has not been improved much since the 1980s.

There is also a heuristic algorithm called the General Number Field Sieve, which runs in
time 2O(n1/3log2/3(n)). However, sufficiently-advanced quantum computers have the potential
to factor large biprimes easily.2

In order to argue for the hardness of fmult under the factoring assumption, we must
prove that we have a good chance of sampling two primes if we sample inputs for fmult at
random. In other words, we need a lower bound on the density of prime numbers.

Definition 6 (The Prime Counting Function) Let π(x) = |{q : q < x and q is prime}|.

Thus, for example, π(2n) = |Πn|. An approximate bound is given by the prime number
theorem, but we need a strict lower bound. Many strict bounds are known, but for our
purposes Chebyshev’s is sufficient.

Fact 1 (Prime Number Theorem) As n→∞ π(n) ≈ n
ln(n) .

3

Fact 2 (Chebyshev) For x > 1, π(x) > x
2 log2(x)

.

Corollary 1 Pr[p is prime : p← {0, 1}n] > 1
2n .

We will construct a reduction which performs primality testing. Consequently, it’s
important to extablish that primality testing is efficient.

1Note that it assumes the Generalized Riemann Hypothesis is true.
2In 1994 Peter Shor [4] found a quantum algorithm that runs in time O(n3) but needs O(n) logical qubits.

The number of physical qubits required is orders of magnitude more, due to error correction.
3Gauss actually conjectured this as a teenager!

Lecture 9, Page 3

Fact 3 (AKS [1]) Primality testing is in P.

Finally, we are to prove that fmult is weakly one-way.

Theorem 1 If the factoring assumption is true, then fmult is a weak one-way function. In
particular, ∀ NUPPT A, ∃n0 s.t. ∀n ≥ n0

Pr[w ∈ {p, q} : p, q ← {0, 1}n, N := fmult(p, q), w ← A(12n, N)] < 1− 1

8n2

Note that in the above theorem statement, we have defined the security parameter
to be the length of each putative prime p, q, rather than the total input length of fmult.
Consequently, we need to scale the adversary’s security parameter by a factor of 2.

Proof: Assume towards contradiction ∃A that violates Theorem 1. That is, A succeeds in
inverting fmult with probability ≥ 1− 1

8n2 for infinitely many n ∈ N.
Now we will construct a reduction R(N) that plays the factoring game (i.e. it plays the

role of A in Definition 5).

Construction 1 (R(N))

1. Samples x, y ← {0, 1}n

2. If x, y are both prime, set N ′ := N . Otherwise, set N ′ := x · y.4

3. w ← A(12n, N ′)

4. Output w if x and y are both prime, otherwise output 0

First we must argue that our reduction is a valid adversary for the factoring game,
and that A behaves as it does in the one-way function game. The following claims can be
verified by inspection.

Claim 1 Since primality testing ∈ P (see Fact 3) and A is NUPPT, R is NUPPT.

Claim 2 The distribution of (N ′, w) in Construction is identical to the distribution of
(N,w) in Theorem 1.

Now we will bound the failure probability of our reduction. There are two ways it could
fail: becausde it does not set N ′ := N , or because the adversary fails to factor N ′. The
next claim follows from Corollary 1:

Claim 3 Pr[N ′ ̸= N] < 1− 1
4n2

By our assumption on the success probability of A, we have:

Claim 4 For infinitely many n ∈ N Pr[w is not a nontrivial factor of N ′] < 1
8n2

4This instruction ensures that we give the adversary exactly the input distribution it expects in the one-
way function game for fmult, which comprises the products of two random (not necessarily prime) numbers.

Lecture 9, Page 4

By taking a union bound on Claims 3 and 4, we have:

Claim 5 For infinitely many n ∈ N

Pr[w is not a nontrivial factor of N] < 1− 1

4n2
+

1

8n2
= 1− 1

8n2

And from Claim 5 it follows that for infinitely many n ∈ N, we have

Pr[R(N) ∈ {p, q} : p, q ← Πn, N := p · q] > 1

8n2

Thus, we have shown that if such an adversary A existed, then our construction R
would contradict the factoring assumption. Therefore, no such adversary A can exist, and
Theorem 1 holds.

We have proven that multiplication gives us a weak one-way function, but what about
strong one-way functions? In a later class, we will prove that we can amplify the hardness
of any weak OWF to create a strong OWF. For now, let’s take an informal look at how we
might do that for multiplication, specifically.

5 Hardness Amplification Preview

How many pairs of random numbers do we need to sample in order to ensure that at least
one pair contains two primes with overwhelming probability? Corollary 1 tells us:

Corollary 2

Pr[∃i ∈ [4n3] s.t. pi, qi are prime : pi, qi ← {0, 1}n ∀i ∈ [4n3]] ≥ 1− 1

en

Proof: By Corollary 1 the probability that no such i exists is(
1− 1

4n2

)4n3

=

(
1− 1

4n2

)4n2·n
< e−n

for all n > 1.

What if we constructed a one-way function that performed 4n3 multiplications in par-
allel, instead of just one? That is, consider the following putative one-way function:

fsmult : (x1, y1, . . . , x4n3 , y4n3) 7→ (fmult(x1, y1), . . . , fmult(x4n3 , y4n3))

To prove that the above function is secure, we would need to modify Construction 2 (the
reduction we constructed for the proof of Theorem 1) to solve a single instance of the
factoring problem, given an adversary that inverts 4n3 multiplications simultaneously. If
the reduction samples 4n3 pairs of numbers internally, Corollary 2 guarantees that with
overwhelming probability there will be at least one pair of primes among them, and the
reduction can substitute its challenge N for the product of the first such pair (analogously to

Lecture 9, Page 5

Step 2 in Construction 2). Because the reduction has an overwhelming probability of finding
a place to plug in its challenge, it has negligible loss in advantage relative to the adversary,
and thus the hardness of factoring implies that fsmult is a strong one-way function.

This is a simple version of a technique known as hardness amplification. In the next
lecture we will show that you can amplify the hardness of any weak one-way function to
create a strong one.

References

[1] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. Primes is in p. Annals of Mathe-
matics, 160:781–793, 2004.

[2] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudoran-
dom generator from any one-way function. SIAM J. Comput., 28(4):1364–1396, 1999.
doi:10.1137/S0097539793244708.

[3] Hendrik Lenstra and Carl Pomerance. A rigorous time bound for factoring integers. J.
Amer. Math. Soc. 5, 5, 09 1992. doi:10.2307/2152702.

[4] P.W. Shor. Algorithms for quantum computation: discrete logarithms and factoring.
In Proceedings 35th Annual Symposium on Foundations of Computer Science, pages
124–134, 1994. doi:10.1109/SFCS.1994.365700.

Lecture 9, Page 6

https://doi.org/10.1137/S0097539793244708
https://doi.org/10.2307/2152702
https://doi.org/10.1109/SFCS.1994.365700

	Topics Covered
	Putting Things Into Perspective
	One Way Functions in Three Flavors
	Weak OWFs from the Hardness of Factoring
	Hardness Amplification Preview

