
CS 6222 Grad Crypto September 18, 2025

Lecture 8: CCA and PRFs from PRGs

Lecturer: Jack Doerner Scribe: Eric Weng

1 Topics Covered

• Chosen Ciphertext Attacks

• Pseudorandom Generators imply Pseudorandom Functions (the GGM Theorem)

2 Chosen Ciphertext Attacks

Recall that in a chosen plaintext attack (CPA), adversaries can not only eavesdrop on
ciphertexts, but have polynomial access to an encryption oracle before and after selecting a
message. This oracle allows the adversary to encrypt any plaintext message and study the
resulting ciphertext.

Definition 1 (CPA Indistinguishability Game). Let Π = (Gen,Enc,Dec) be an encryption
scheme and A = (A1,A2) be any two-part NUPPT adversary. Define the INDCPA game,
IND-CPAΠ,A

b (n), as follows:

1. k ← Gen(1n).

2. (m0,m1, s)← AEnck(·)
1 (1n).

3. c∗ ← Enck(mb; r
∗) : r∗ ← randomness domain of Enck.

1

4. Output AEnck(·)
2 (s, c∗).

Now consider if the adversary also had access to a decryption oracle. Such an attack method
is known as a chosen ciphertext attack (CCA). There are two variants, depending on when
the adversary can use the decryption oracle.

Definition 2 (CCA Indistinguishability Game). For scheme Π = (Gen,Enc,Dec) and
NUPPT A = (A1,A2), the INDCCA1 game, IND-CCA1Π,A

b (n), is as follows:

1. k ← Gen(1n)

2. (m0,m1, s)← AEnck(·),Deck(·)
1 (1n)

3. c∗ ← Enck(mb; r
∗) : r∗ ← randomness domain of Enck.

4. Output AEnck(·)
2 (s, c∗)

1Here we give a name to the random coins used to encrypt mb, so that we can refer to them later.

Lecture 8, Page 1



In the previous lecture we introduced a IND-CPA-secure encryption scheme from PRFs.
That scheme is also IND-CCA1-secure, and the proof is very similar to the one we have al-
ready seen. Recall that we defined a set S of the random coins used by the encryption oracle
in Step 2, and then reasoned about the probability that r∗ ∈ S. In the IND-CCA1 game,
the adversary can craft its own cipherexts that include any randomness it desires, and pass
them to the decryption oracle. These adversarially-crafted values are also be included in S,
and the probability that r∗ ∈ S remains negligible because r∗ is sampled uniformly from an
exponentially-large domain. The rest of the proof goes through as before.

Definition 3 (Adaptive CCA Indistinguishability Game). For scheme Π = (Gen,Enc,Dec)
and NUPPT A = (A1,A2), the INDCCA2 game, IND-CCA2Π,A

b (n), is as follows:

1. k ← Gen(1n)

2. (m0,m1, s)← AEnck(·),Deck(·)
1 (1n)

3. c∗ ← Enck(mb)

4. Output AEnck(·),Deck(·)
2 (s, c∗), but refuse to decrypt c∗

Here, the adversary has additional access to the decryption oracle in Step 4, after it sees c∗.
For this reason, CCA2 is also known as Adaptive CCA: the adversary can use its knowledge
of c∗ to craft ciphertexts on which to query the decryption oracle.

Naturally, we set up the game so that the adversary cannot recover mb by simply decrypting
c∗. However, a clever adversary might still be able to modify c∗ so that it encrypts a
message that is different from but identifiably related to mb. In order to achieve IND-CCA2
security, we have to prevent this kind of behavior.2 Unfortunately, the PRF-based scheme
we introduced last class is not IND-CCA2-secure. If (for example) an adversary queries the
decryption oracle with the value c∗ ⊕ 1, it will receive a decryption of mb ⊕ 1, and this is
enough to determine the value of b.

3 Obtaining PRFs from PRGs

Recall that a pseudorandom generator (PRG) is a deterministic polynomial time function
G : {0, 1}n → {0, 1}ℓ(n) such that {G(Un)}n∈N ≈c {Uℓ(n)}n∈N where Un is a random vari-
able that is uniformly distributed over {0, 1}n. In contrast, a pseudorandom function (PRF)

family is a set of functions {Fk : {0, 1}|k| → {0, 1}ℓ(|k|)}k∈{0,1}∗ such that a randomly sam-
pled member of the set is computationally-oracle-indistinguishable from a function sampled
randomly from the set of all functions with the same domain and range. In other words, if
Fn,ℓ(n) =

{
f : {0, 1}n → {0, 1}ℓ(n)

}
is the set of all functions from n bits to ℓ(n) bits, then

for all NUPPT A,{
AFk(·)(1n) : k ← {0, 1}n

}
n∈N
≈c

{
Af(·)(1n) : f ← Fn,ℓ(n)

}
n∈N

2On the other hand, this kind of behavior is sometimes desirable. For further reading, search up homo-
morphic encryption.
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In this lecture, we will prove only one theorem:

Theorem 1 (Goldreich-Goldwasser-Micali [GGM84]). ∃ PRG ⇒ ∃ PRF .

Proof. In Lecture 5, we proved that we can create a PRG with any polynomial stretch from
a PRG with one-bit stretch., so without loss of generality, let G : {0, 1}n → {0, 1}2n be a
PRG. In this proof we will construct a length-preserving PRF. Given such a PRF and a
PRG, it is easy to construct a PRF with any polynomially-bounded output length.

Next, define Gb : {0, 1}n → {0, 1}n for b ∈ {0, 1} such that ∀x ∈ {0, 1}n, G0(x)∥G1(x) =
G(x). Essentially, we will use Gb(x) to run G(x) and take either the first or last n bits of
the 2n-bit output of G.

Construction 1 (Target PRF). Let F : {0, 1}n × {0, 1}n → {0, 1}n be a PRF that accepts
n-bit key and n-bit input, and returns a n-bit output. Let F be computed as follows:

F : (k, x) 7→ Gxn(Gxn−1(. . . Gx2(Gx1(k)) . . .)) : x1∥x2∥ . . . ∥xn−1∥xn = x

or equivalently

F : (k, x) 7→ Gxn ◦Gxn−1 ◦ . . . ◦Gx2 ◦Gx1(k) : x1∥x2∥ . . . ∥xn−1∥xn = x.

In other words, recursively call G on k, and use each bit of x to determine which half of the
output to keep at the corresponding level of recursion.

We would like to construct a hybrid argument, using the PRG security of G to show that
each pair of hybrids is computationally indistinguishable. It might be temting to represent
the evaluation of the PRF as a tree,3 where each leaf corresponds to a single input (and
each level to the intermediate output of a recursive call to G), and then specify one hybrid
distribution for each node, changing that node to a uniformly distributed value, in topolog-
ical order. However, we have 2n possible inputs for F in n layers, and the hybrid lemma
only works with a polynomial number of related distributions.

To get around this problem, notice that the adversary can only query the oracle in the
PRF game polynomially-many times, which means that it can observe at most polynomi-
ally many leaves and interior nodes in this tree. Our strategy will be to replace only these
nodes with uniformly distributed values, using the hybrid lemma.

We begin with a lemma formalizing our intuition that a PRG can be evaluated polynomially
many times in parallel, so long as the inputs are independent of one another.

Lemma 1. If G : {0, 1}n → {0, 1}ℓ(n) is a PRG and ℓ and t are polynomials, then{
{G(sj)}j∈[t(n)] : sj ← {0, 1}n

}
n∈N ≈c

{
{yj}j∈[t(n)] : yj ← {0, 1}ℓ(n)

}
n∈N

.

3See the binary tree in Figure 1.
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Figure 1: Possible PRF execution paths for n = 3. Note that k0 = k is the PRF key, and at
each layer execution takes the left or right fork based upon the value of the corresponding
bit of the input x. The output is knx .

Proof. Let H i
n = (G(s1), . . . , G(st(n)−i), y1, . . . , yi) : sj ← {0, 1}n, yj ← {0, 1}ℓ(n) be a hy-

brid distribution. The first t(n)− i terms are PRG evaluations, and the remaining i terms
are uniform.

By the hybrid lemma, if ∃ PPT Dn and some value δn ∈ R≥0, s.t.∣∣∣Pr[Dn(1
n, H0

n) = 1]− Pr[Dn(1
n, Ht(n)

n ) = 1]
∣∣∣
n∈N
≥ δn,

then ∃ in ∈ [t(n)− 1] s.t.

∣∣Pr[Dn(1
n, H in

n ) = 1]− P [Dn(1
n, H in+1

n )− 1]
∣∣ ≥ δn

t(n)
.

Next, consider the reduction

Rn : x 7→ Dn((G(s1), . . . , G(st(n)−in−1), x, y1, yin)) : sj ← {0, 1}n, yj ← {0, 1}ℓ(n)
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where in is the value known to exist due to the hybrid lemma, above. Notice that if we take
Un to be a random variable uniformly distributed over {0, 1}n, thenRn(G(Un)) is distributed
identically to H in

n and Rn(G(Uℓ(n))) is distributed identically to H in+1
n . Therefore,

∣∣Pr[Rn(G(Un)) = 1]− P [Rn(Uℓ(n)) = 1]
∣∣ ≥ δn

t(n)
.

So far we have defined both the adversary and its distinguishing advantage for a single
security parameter value only. We can construct a single NUPPT adversary D = {Dn}n∈N
and an advantage function δ(n) = δn. If such an adversary exists, then there exists a

NUPPT reduction R with distinguishing advantage no less than δ(n)
t(n) , which is non-negligible

if δ(n) is. Lemma 1 holds by contraposition.

Now we will define an oracle that takes the place of Fk or f in the PRG game, and
lazily fills in the necessary elements in a truncated version of the tree that was defined in
Figure 1, as the adversary queries various leaf values. The tree constructed by our oracle
will be truncated: the nodes at some specified level are sampled randomly, and the nodes
between that level and the leaves are computing using G. Thus we can use the oracle to
define a sequence hybrid experiments, one for each level.

Construction 2 (Lazy Tree Oracle). Consider the oracle φi
n : {0, 1}n → {0, 1}n that

receives input x1∥ . . . ∥xn = x.

• If kix1∥...∥xi
is not defined, sample kix1∥...∥xi

← {0, 1}n and add it to set Si.

• For j ∈ [i + 1, n], if kjx1∥...∥xj
is not defined, let kjx1∥...∥xj

:= Gxj (k
j−1
x1∥...∥xj−1

) and add

it to set Sj.

• Output knx .

An illustrated example of the operation of our oracle is given in Figure 2.

Claim 1. ∀D, Pr
[
DFk(1n) = 1 : k ← {0, 1}n

]
= Pr

[
Dφ0

n(1n) = 1
]
.

The above claim holds because the oracle produces exactly the same distribution as the
pseudorandom function (although it is defined lazily) in this case.

Claim 2. ∀D, Pr
[
Df (1n) = 1 : f ← Fn,n

]
= Pr

[
Dφn

n(1n) = 1
]
.

The above claim holds because the oracle’s outputs are all uniformly-random n-bit strings
in this case, which is identical to the distribution of outputs produced by a random function.

Claim 3. ∀ NUPPT D, ∃ polynomial p s.t. ∀i ∈ [n], j ∈ [n],

Pr
[
|Sj | < p(n) : Sj is the set constructed by φi

n in Dφi
n(1n)

]
= 1.

Claim 4. The difference between the distributions of the random variables Dφi
n(1n) and

Dφi+1
n (1n) is completely characterized by the fact that

• In Dφi
n(1n), Si+1 ⊂ {Gb(k

i
x) : k

i
x ← {0, 1}n}b∈{0,1},x∈{0,1}i,
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Figure 2: Example of the operation and internal state of oracle φ2
3 after receiving the queries

{010, 011, 101}. Blurred elements are not defined.

• In Dφi+1
n (1n), Si+1 ⊂ {ki+1

x : ki+1
x ← {0, 1}n}x∈{0,1}i+1.

Note that in both cases, we have Si+1 ⊂ y⃗ where y⃗ is distributed over {0, 1}n×2i. In
the former case, y⃗ comprises i distinct PRG outputs of length 2n, with the first and last
n bits of each output being included in y⃗ separately. In the latter case, y⃗ comprises 2i
random values, each of length n. In both cases, Si+1 is formed from y⃗ by taking a specific
subset of the values in y⃗, and by Claim 3, the size of this subset is at most p(n) for some
polynomial p. Thus our oracle defines a sequence of hybrid distributions, as we intended,
and each successive hybrid replaces an at-most-polynomial number of PRG outputs with
uniformly-sampled values.
We can recast our vector y⃗ ∈ {0, 1}n×2i as a vector z⃗ ∈ {0, 1}2n×i containing either i
(undivided) PRG outputs of length 2n, or i uniform 2n-bit strings. Notice that Si+1 depends
upon at most p(n) elements of z⃗. Thus we can construct Si+1 using exactly p(n) length-2n
PRG outputs or uniform bitstrings.

Claim 5. By the hybrid lemma and Claims 1 and 2, if ∃ PPT Dn and some value δn ∈ R≥0

such that ∣∣∣Pr [DFk
n (1n) = 1 : k ← {0, 1}n

]
− Pr

[
Df

n(1
n) = 1 : f ← Fn,n

]∣∣∣ ≥ δn,

then ∃ in ∈ [0, n− 1] such that∣∣∣Pr [Dφin
n

n (1n) = 1
]
− Pr

[
Dφin+1

n
n (1n) = 1

]∣∣∣ ≥ δn
n
.
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Now consider a reduction Rn which has knowledge of in hard-coded.4 Given some input

w⃗ ∈ {0, 1}2n×p(n),5 Rn(1
n, w⃗) emulates Dφin

n
n (1n) internally, but uses w⃗ to build the set

Sin+1 inside of the oracle φin
n . Notice that this reduction is PPT if Dn is PPT.

Claim 6. By Claim 4 and the structure of Rn,

Pr
[
Rn(1

n, (G(s1), . . . , G(sp(n)))) = 1 : s⃗← {0, 1}n×p(n)
]
= Pr

[
Dφin

n
n (1n) = 1

]
Claim 7. By Claim 4 and the structure of Rn,

Pr
[
Rn(1

n, w⃗) = 1 : w⃗ ← {0, 1}2n×p(n)
]
= Pr

[
Dφin+1

n
n (1n) = 1

]
Once again, we have considered only individual values of the security parameter in our

previous claims (each with a specific PPT adversary and real-valued advantage). Now we
generalize to a NUPPT adversary D = {Dn}n∈N, and NUPPT reduction R = {Rn}n∈N,
and an advantage function δ(n) = δn.

Claim 8. By Claims 5-7, if ∃ NUPPT D and some function δ : N→ R≥0 s.t.∣∣∣Pr [DFk(1n) = 1
]
− Pr

[
Df (1n) = 1 : f ← Fn,n

]∣∣∣ ≥ δ(n),

Then ∃ NUPPT R s.t.∣∣∣∣∣∣
Pr

[
R(1n, (G(sj))j∈[p(n)]) = 1 : s⃗← {0, 1}n×p(n)

]
− Pr

[
R(1n, w⃗) = 1 : w⃗ ← {0, 1}2n×p(n)

]
∣∣∣∣∣∣ ≥ δ(n)

n
.

Notice that in Claim 8, if δ is a non-negligible function, then we can view our reduction R
as an adversary that contradicts Lemma 1. In other words, to prove Theorem 1, suppose
toward contradiction that ∃ NUPPT D that oracle-distinguishes our PRF Fk from a truly
random function f with advantage no less than some non-negligible function δ(n). By
combining the reductions from Claim 8 and the proof of Lemma 1, ∃ NUPPT R′ that
distinguishes G(s) : s ← {0, 1}n from a uniformly random value with advantage δ(n)/(n ·
p(n)), which is non-negligible,6 contradicting the PRG security of G. Formally,∣∣∣Pr [DFk(1n) = 1 : k ← {0, 1}n

]
− Pr

[
Df (1n) = 1 : f ← Fn,n

]∣∣∣ ≥ δ(n)

⇒
∣∣Pr [R′(1n, G(s)) = 1 : s← {0, 1}n

]
− Pr

[
R′(1n, y) = 1 : y ← {0, 1}2n

]∣∣ ≥ δ(n)

n · p(n)
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