
CS 6222 Grad Crypto September 18, 2025

Lecture 8: CCA and PRFs from PRGs

Lecturer: Jack Doerner Scribe: Eric Weng

1 Topics Covered

• Chosen Ciphertext Attacks

• Pseudorandom Generators imply Pseudorandom Functions (the GGM Theorem)

2 Chosen Ciphertext Attacks

Recall that in a chosen plaintext attack (CPA), adversaries can not only eavesdrop on
ciphertexts, but have polynomial access to an encryption oracle before and after selecting a
message. This oracle allows the adversary to encrypt any plaintext message and study the
resulting ciphertext.

Definition 1 (CPA Indistinguishability Game). Let Π = (Gen,Enc,Dec) be an encryption
scheme and A = (A1,A2) be any two-part NUPPT adversary. Define the INDCPA game,
IND-CPAΠ,A

b (n), as follows:

1. k ← Gen(1n).

2. (m0,m1, s)← AEnck(·)
1 (1n).

3. c∗ ← Enck(mb; r
∗) : r∗ ← randomness domain of Enck.

1

4. Output AEnck(·)
2 (s, c∗).

Now consider if the adversary also had access to a decryption oracle. Such an attack method
is known as a chosen ciphertext attack (CCA). There are two variants, depending on when
the adversary can use the decryption oracle.

Definition 2 (CCA Indistinguishability Game). For scheme Π = (Gen,Enc,Dec) and
NUPPT A = (A1,A2), the INDCCA1 game, IND-CCA1Π,A

b (n), is as follows:

1. k ← Gen(1n)

2. (m0,m1, s)← AEnck(·),Deck(·)
1 (1n)

3. c∗ ← Enck(mb; r
∗) : r∗ ← randomness domain of Enck.

4. Output AEnck(·)
2 (s, c∗)

1Here we give a name to the random coins used to encrypt mb, so that we can refer to them later.

Lecture 8, Page 1

In the previous lecture we introduced a IND-CPA-secure encryption scheme from PRFs.
That scheme is also IND-CCA1-secure, and the proof is very similar to the one we have al-
ready seen. Recall that we defined a set S of the random coins used by the encryption oracle
in Step 2, and then reasoned about the probability that r∗ ∈ S. In the IND-CCA1 game,
the adversary can craft its own cipherexts that include any randomness it desires, and pass
them to the decryption oracle. These adversarially-crafted values are also be included in S,
and the probability that r∗ ∈ S remains negligible because r∗ is sampled uniformly from an
exponentially-large domain. The rest of the proof goes through as before.

Definition 3 (Adaptive CCA Indistinguishability Game). For scheme Π = (Gen,Enc,Dec)
and NUPPT A = (A1,A2), the INDCCA2 game, IND-CCA2Π,A

b (n), is as follows:

1. k ← Gen(1n)

2. (m0,m1, s)← AEnck(·),Deck(·)
1 (1n)

3. c∗ ← Enck(mb)

4. Output AEnck(·),Deck(·)
2 (s, c∗), but refuse to decrypt c∗

Here, the adversary has additional access to the decryption oracle in Step 4, after it sees c∗.
For this reason, CCA2 is also known as Adaptive CCA: the adversary can use its knowledge
of c∗ to craft ciphertexts on which to query the decryption oracle.

Naturally, we set up the game so that the adversary cannot recover mb by simply decrypting
c∗. However, a clever adversary might still be able to modify c∗ so that it encrypts a
message that is different from but identifiably related to mb. In order to achieve IND-CCA2
security, we have to prevent this kind of behavior.2 Unfortunately, the PRF-based scheme
we introduced last class is not IND-CCA2-secure. If (for example) an adversary queries the
decryption oracle with the value c∗ ⊕ 1, it will receive a decryption of mb ⊕ 1, and this is
enough to determine the value of b.

3 Obtaining PRFs from PRGs

Recall that a pseudorandom generator (PRG) is a deterministic polynomial time function
G : {0, 1}n → {0, 1}ℓ(n) such that {G(Un)}n∈N ≈c {Uℓ(n)}n∈N where Un is a random vari-
able that is uniformly distributed over {0, 1}n. In contrast, a pseudorandom function (PRF)

family is a set of functions {Fk : {0, 1}|k| → {0, 1}ℓ(|k|)}k∈{0,1}∗ such that a randomly sam-
pled member of the set is computationally-oracle-indistinguishable from a function sampled
randomly from the set of all functions with the same domain and range. In other words, if
Fn,ℓ(n) =

{
f : {0, 1}n → {0, 1}ℓ(n)

}
is the set of all functions from n bits to ℓ(n) bits, then

for all NUPPT A,{
AFk(·)(1n) : k ← {0, 1}n

}
n∈N
≈c

{
Af(·)(1n) : f ← Fn,ℓ(n)

}
n∈N

2On the other hand, this kind of behavior is sometimes desirable. For further reading, search up homo-
morphic encryption.

Lecture 8, Page 2

In this lecture, we will prove only one theorem:

Theorem 1 (Goldreich-Goldwasser-Micali [GGM84]). ∃ PRG ⇒ ∃ PRF .

Proof. In Lecture 5, we proved that we can create a PRG with any polynomial stretch from
a PRG with one-bit stretch., so without loss of generality, let G : {0, 1}n → {0, 1}2n be a
PRG. In this proof we will construct a length-preserving PRF. Given such a PRF and a
PRG, it is easy to construct a PRF with any polynomially-bounded output length.

Next, define Gb : {0, 1}n → {0, 1}n for b ∈ {0, 1} such that ∀x ∈ {0, 1}n, G0(x)∥G1(x) =
G(x). Essentially, we will use Gb(x) to run G(x) and take either the first or last n bits of
the 2n-bit output of G.

Construction 1 (Target PRF). Let F : {0, 1}n × {0, 1}n → {0, 1}n be a PRF that accepts
n-bit key and n-bit input, and returns a n-bit output. Let F be computed as follows:

F : (k, x) 7→ Gxn(Gxn−1(. . . Gx2(Gx1(k)) . . .)) : x1∥x2∥ . . . ∥xn−1∥xn = x

or equivalently

F : (k, x) 7→ Gxn ◦Gxn−1 ◦ . . . ◦Gx2 ◦Gx1(k) : x1∥x2∥ . . . ∥xn−1∥xn = x.

In other words, recursively call G on k, and use each bit of x to determine which half of the
output to keep at the corresponding level of recursion.

We would like to construct a hybrid argument, using the PRG security of G to show that
each pair of hybrids is computationally indistinguishable. It might be temting to represent
the evaluation of the PRF as a tree,3 where each leaf corresponds to a single input (and
each level to the intermediate output of a recursive call to G), and then specify one hybrid
distribution for each node, changing that node to a uniformly distributed value, in topolog-
ical order. However, we have 2n possible inputs for F in n layers, and the hybrid lemma
only works with a polynomial number of related distributions.

To get around this problem, notice that the adversary can only query the oracle in the
PRF game polynomially-many times, which means that it can observe at most polynomi-
ally many leaves and interior nodes in this tree. Our strategy will be to replace only these
nodes with uniformly distributed values, using the hybrid lemma.

We begin with a lemma formalizing our intuition that a PRG can be evaluated polynomially
many times in parallel, so long as the inputs are independent of one another.

Lemma 1. If G : {0, 1}n → {0, 1}ℓ(n) is a PRG and ℓ and t are polynomials, then{
{G(sj)}j∈[t(n)] : sj ← {0, 1}n

}
n∈N ≈c

{
{yj}j∈[t(n)] : yj ← {0, 1}ℓ(n)

}
n∈N

.

3See the binary tree in Figure 1.

Lecture 8, Page 3

k0 Ã f0,1gn

k
0
1 = G

0
(k0) k

1
1 = G

1
(k0)

k2
00
 = G

0
(k

0
1) k2

01
 = G

1
(k

0
1) k2

10
 = G

0
(k

1
1) k2

11
 = G

1
(k

1
1)

k
3

00
0
 =
 G

0
(k

2
00
)

k
3

00
1
 =
 G

1
(k

2
00
)

k
3

01
0
 =
 G

0
(k

2
01
)

k
3

01
1
 =
 G

1
(k

2
01
)

k
3

10
0
 =
 G

0
(k

2
10
)

k
3

10
1
 =
 G

1
(k

2
10
)

k
3

11
0
 =
 G

0
(k

2
11
)

k
3

11
1
 =
 G

1
(k

2
11
)

2n outputs
n bits each

n
 l
ay

er
s

Figure 1: Possible PRF execution paths for n = 3. Note that k0 = k is the PRF key, and at
each layer execution takes the left or right fork based upon the value of the corresponding
bit of the input x. The output is knx .

Proof. Let H i
n = (G(s1), . . . , G(st(n)−i), y1, . . . , yi) : sj ← {0, 1}n, yj ← {0, 1}ℓ(n) be a hy-

brid distribution. The first t(n)− i terms are PRG evaluations, and the remaining i terms
are uniform.

By the hybrid lemma, if ∃ PPT Dn and some value δn ∈ R≥0, s.t.∣∣∣Pr[Dn(1
n, H0

n) = 1]− Pr[Dn(1
n, Ht(n)

n) = 1]
∣∣∣
n∈N
≥ δn,

then ∃ in ∈ [t(n)− 1] s.t.

∣∣Pr[Dn(1
n, H in

n) = 1]− P [Dn(1
n, H in+1

n)− 1]
∣∣ ≥ δn

t(n)
.

Next, consider the reduction

Rn : x 7→ Dn((G(s1), . . . , G(st(n)−in−1), x, y1, yin)) : sj ← {0, 1}n, yj ← {0, 1}ℓ(n)

Lecture 8, Page 4

where in is the value known to exist due to the hybrid lemma, above. Notice that if we take
Un to be a random variable uniformly distributed over {0, 1}n, thenRn(G(Un)) is distributed
identically to H in

n and Rn(G(Uℓ(n))) is distributed identically to H in+1
n . Therefore,

∣∣Pr[Rn(G(Un)) = 1]− P [Rn(Uℓ(n)) = 1]
∣∣ ≥ δn

t(n)
.

So far we have defined both the adversary and its distinguishing advantage for a single
security parameter value only. We can construct a single NUPPT adversary D = {Dn}n∈N
and an advantage function δ(n) = δn. If such an adversary exists, then there exists a

NUPPT reduction R with distinguishing advantage no less than δ(n)
t(n) , which is non-negligible

if δ(n) is. Lemma 1 holds by contraposition.

Now we will define an oracle that takes the place of Fk or f in the PRG game, and
lazily fills in the necessary elements in a truncated version of the tree that was defined in
Figure 1, as the adversary queries various leaf values. The tree constructed by our oracle
will be truncated: the nodes at some specified level are sampled randomly, and the nodes
between that level and the leaves are computing using G. Thus we can use the oracle to
define a sequence hybrid experiments, one for each level.

Construction 2 (Lazy Tree Oracle). Consider the oracle φi
n : {0, 1}n → {0, 1}n that

receives input x1∥ . . . ∥xn = x.

• If kix1∥...∥xi
is not defined, sample kix1∥...∥xi

← {0, 1}n and add it to set Si.

• For j ∈ [i + 1, n], if kjx1∥...∥xj
is not defined, let kjx1∥...∥xj

:= Gxj (k
j−1
x1∥...∥xj−1

) and add

it to set Sj.

• Output knx .

An illustrated example of the operation of our oracle is given in Figure 2.

Claim 1. ∀D, Pr
[
DFk(1n) = 1 : k ← {0, 1}n

]
= Pr

[
Dφ0

n(1n) = 1
]
.

The above claim holds because the oracle produces exactly the same distribution as the
pseudorandom function (although it is defined lazily) in this case.

Claim 2. ∀D, Pr
[
Df (1n) = 1 : f ← Fn,n

]
= Pr

[
Dφn

n(1n) = 1
]
.

The above claim holds because the oracle’s outputs are all uniformly-random n-bit strings
in this case, which is identical to the distribution of outputs produced by a random function.

Claim 3. ∀ NUPPT D, ∃ polynomial p s.t. ∀i ∈ [n], j ∈ [n],

Pr
[
|Sj | < p(n) : Sj is the set constructed by φi

n in Dφi
n(1n)

]
= 1.

Claim 4. The difference between the distributions of the random variables Dφi
n(1n) and

Dφi+1
n (1n) is completely characterized by the fact that

• In Dφi
n(1n), Si+1 ⊂ {Gb(k

i
x) : k

i
x ← {0, 1}n}b∈{0,1},x∈{0,1}i,

Lecture 8, Page 5

k2
01
 Ã f0,1gn k2

10
 Ã f0,1gn

k
3

01
0
 =
 G

0
(k

2
01
)

k
3

01
1
 =
 G

1
(k

2
01
)

k
3

10
1
 =
 G

1
(k

2
10
)

S2

S3

Figure 2: Example of the operation and internal state of oracle φ2
3 after receiving the queries

{010, 011, 101}. Blurred elements are not defined.

• In Dφi+1
n (1n), Si+1 ⊂ {ki+1

x : ki+1
x ← {0, 1}n}x∈{0,1}i+1.

Note that in both cases, we have Si+1 ⊂ y⃗ where y⃗ is distributed over {0, 1}n×2i. In
the former case, y⃗ comprises i distinct PRG outputs of length 2n, with the first and last
n bits of each output being included in y⃗ separately. In the latter case, y⃗ comprises 2i
random values, each of length n. In both cases, Si+1 is formed from y⃗ by taking a specific
subset of the values in y⃗, and by Claim 3, the size of this subset is at most p(n) for some
polynomial p. Thus our oracle defines a sequence of hybrid distributions, as we intended,
and each successive hybrid replaces an at-most-polynomial number of PRG outputs with
uniformly-sampled values.
We can recast our vector y⃗ ∈ {0, 1}n×2i as a vector z⃗ ∈ {0, 1}2n×i containing either i
(undivided) PRG outputs of length 2n, or i uniform 2n-bit strings. Notice that Si+1 depends
upon at most p(n) elements of z⃗. Thus we can construct Si+1 using exactly p(n) length-2n
PRG outputs or uniform bitstrings.

Claim 5. By the hybrid lemma and Claims 1 and 2, if ∃ PPT Dn and some value δn ∈ R≥0

such that ∣∣∣Pr [DFk
n (1n) = 1 : k ← {0, 1}n

]
− Pr

[
Df

n(1
n) = 1 : f ← Fn,n

]∣∣∣ ≥ δn,

then ∃ in ∈ [0, n− 1] such that∣∣∣Pr [Dφin
n

n (1n) = 1
]
− Pr

[
Dφin+1

n
n (1n) = 1

]∣∣∣ ≥ δn
n
.

Lecture 8, Page 6

Now consider a reduction Rn which has knowledge of in hard-coded.4 Given some input

w⃗ ∈ {0, 1}2n×p(n),5 Rn(1
n, w⃗) emulates Dφin

n
n (1n) internally, but uses w⃗ to build the set

Sin+1 inside of the oracle φin
n . Notice that this reduction is PPT if Dn is PPT.

Claim 6. By Claim 4 and the structure of Rn,

Pr
[
Rn(1

n, (G(s1), . . . , G(sp(n)))) = 1 : s⃗← {0, 1}n×p(n)
]
= Pr

[
Dφin

n
n (1n) = 1

]
Claim 7. By Claim 4 and the structure of Rn,

Pr
[
Rn(1

n, w⃗) = 1 : w⃗ ← {0, 1}2n×p(n)
]
= Pr

[
Dφin+1

n
n (1n) = 1

]
Once again, we have considered only individual values of the security parameter in our

previous claims (each with a specific PPT adversary and real-valued advantage). Now we
generalize to a NUPPT adversary D = {Dn}n∈N, and NUPPT reduction R = {Rn}n∈N,
and an advantage function δ(n) = δn.

Claim 8. By Claims 5-7, if ∃ NUPPT D and some function δ : N→ R≥0 s.t.∣∣∣Pr [DFk(1n) = 1
]
− Pr

[
Df (1n) = 1 : f ← Fn,n

]∣∣∣ ≥ δ(n),

Then ∃ NUPPT R s.t.∣∣∣∣∣∣
Pr

[
R(1n, (G(sj))j∈[p(n)]) = 1 : s⃗← {0, 1}n×p(n)

]
− Pr

[
R(1n, w⃗) = 1 : w⃗ ← {0, 1}2n×p(n)

]
∣∣∣∣∣∣ ≥ δ(n)

n
.

Notice that in Claim 8, if δ is a non-negligible function, then we can view our reduction R
as an adversary that contradicts Lemma 1. In other words, to prove Theorem 1, suppose
toward contradiction that ∃ NUPPT D that oracle-distinguishes our PRF Fk from a truly
random function f with advantage no less than some non-negligible function δ(n). By
combining the reductions from Claim 8 and the proof of Lemma 1, ∃ NUPPT R′ that
distinguishes G(s) : s ← {0, 1}n from a uniformly random value with advantage δ(n)/(n ·
p(n)), which is non-negligible,6 contradicting the PRG security of G. Formally,∣∣∣Pr [DFk(1n) = 1 : k ← {0, 1}n

]
− Pr

[
Df (1n) = 1 : f ← Fn,n

]∣∣∣ ≥ δ(n)

⇒
∣∣Pr [R′(1n, G(s)) = 1 : s← {0, 1}n

]
− Pr

[
R′(1n, y) = 1 : y ← {0, 1}2n

]∣∣ ≥ δ(n)

n · p(n)

References

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random
functions (extended abstract). In 25th Annual Symposium on Foundations of
Computer Science, West Palm Beach, Florida, USA, 24-26 October 1984, pages
464–479. IEEE Computer Society, 1984.

4Note that this Rn and Dn are not the same as the ones we considered when proving Lemma 1.
5w⃗ can be thought of as containing the p(n) elements of z⃗ on which Sin+1 depends, as per the above

discussion.
6Recall that p is a polynomial that depends upon D, per Claim 3.

Lecture 8, Page 7

	Topics Covered
	Chosen Ciphertext Attacks
	Obtaining PRFs from PRGs

