CS 6222 Grad Crypto September 11, 2025

Lecture 6: Pseudorandom Functions

Lecturer: Jack Doerner Scribe: Deebakkarthi Chinnasame Rani

1 Topics Covered

e Random Functions
e Oracle Indistinguishability

e Pseudorandom Functions

2 Review and Warm-up

We have previously shown that one-time pad achieves (and is in fact optimal for) a perfect
notion of security. However, it is very cumbersome to use in the real world. This is primarily
due to the following reasons:

e Keys as long as the message

e Inability to reuse keys

In a previous class, we introduced a weaker, computational notion of security for encryp-
tion, and a special kind of function called a pseudorandom generator (PRG) that allows us
to achieve our relaxed security notion while having short encryption keys. Recall:

Definition 1 (EAV1 Security). An encryption scheme (Gen, Enc, Dec) for the message space
M is secure against single-ciphertext eavesdropping if Vmg, m; € M,

{Enci(mo) : k < Gen(1™) }pen = {Enck(my) : k < Gen(1™) }hen

Construction 1 (“Computational OTP” for £(n)-bit messages). For some polynomial func-
tion £, let M = C = {0,11") let K = {0,1}", and let G : {0,1}" — {0,1}*™ pe q

pseudorandom generator. The scheme is defined as follows:

Gen:1"—k:k+ K
Enc: k,m— ma& G(k)
Dec: k,c— c® G(k)

Theorem 1. If G is a PRG then Construction 1 is EAV1-secure.

Lecture 6, Page 1

https://jackdoerner.net/teaching/2025/Fall/CS6222

The above construction works for a single message, but in the real world, we need to
be able to handle multiple messages. We could imagine using G to stretch k£ enough that
it can be used to padd all the messages we want to send, but if we’re not sending them
at the same time, then this solution requires keeping state, which is not desirable. In this
lecture we will introduce another primitive which will allow us to construct multi-message
randomized encryption without keeping state.

Suppose that could build a magical PRG with exponential output.® Specifically, imagine

G :{0,1}" — {0, 1}4)2"

was a PRG, and then suppose that we had an auxiliary function F' that could efficiently
compute any block of £(n) bits from the output of G. For any s € {0,1}",

Fo: o0 Yool - Y@ty emy—1 - where yol[... [yan.gmy—1 = G(5)

Using the above functions, we could construct the following randomized encryption
scheme that handles many messages without keeping state:

Construction 2 (Encryption for many ¢(n)-bit messages). Let M = {0,1}¥") ¢ =
{0, 17 and K = {0,1}". The encryption scheme is:

Gen: 1" —k: k<« K
Enc: k,m— r|[(m @ Fi(r)) : r < {0,1}"
Dec: k,cr d @ Fy(r) :r||d = ¢

In other words, we randomly choose a block of pseudorandom bits (indexed by r) from
the exponentially-long output of G(k), use Fj to compute that block efficiently, and then
use that block of bits to mask the message m. In order to decrypt, we need both k and the
index 7 of the block of pseudorandom bits we used during encryption. Transmitting » in
the clear is perfectly fine, as long as k remains secret.

Though the above direction seems useful, the function G : {0,1}" — {0, 1})2" cannot
be a PRG. The output of G is exponentially long, and providing it to a NUPPT adversary
grants that adversary exponential running time, which the adversary can use to distinguish
the output from a uniform string! Nevertheless, we can hope to define and build functions
that work like F' (which has only polynomially-much output). We call these pseudorandom
functions (PRFs). In order to define them without passing through the nonsensical G, we
must first introduce the concept of random functions .

3 Random Functions

Consider a function f : {0,1}"™ — {0,1}*(™) from n bit strings to £(n) bit strings, for some
polynomial ¢. We can represent this function as a table.

'Further down the page, we will discover that this is a nonsensical idea.

Lecture 6, Page 2

| y=f(z)
0 f(0)
1 f

on 1| fam — 1)

The number of elements in this table is 2". Each entry in the y = f(z) column has a
length of ¢(n) bits. Therefore, the size of this table is £(n) - 2" bits. We don’t need to store
the values of = since they are implicit in the ordering of the elements.

Example 1. Let us set n = 3 and £(n) = n for simplicity. The three-bit increment function
f:xz = x+1mod8 is represented by the following table:

r | y=f(z)
000 | 001
001| 010
010 | o011
011] 100
100 | 101
101 | 110
110 | 111
111|000

We can represent this function as a bitstring of length £(n) - 2" = 3 -23 = 24. Thus,
f =001010011100101110111000. This is powerful, as we can represent any function as a
bitstring of its outputs concatenated together.

Let F, ¢n) be the set of all functions from {0,1}" — {0, 1} The cardinality of

Fue(n) is the same as the number of possible tables, i.e. 2t(n)-2"

Definition 2. If we sample f from the above-mentioned set F, yy), then f is called a
random function.?

To help us understand how a random function behaves, we can construct a stateful,
randomized algorithm?® that behaves identically:

2This should not be confused with a randomized algorithm that takes a sequence of random coins as
auxiliary input. We might sometimes informally refer to randomized algorithms as a “random functions”,
but in cryptography, formally speaking, a random function is a (deterministic) function selected randomly
from some set or distribution. It doesn’t make much sense to describe a single function as “random” without
reference to the sampling process, just it doesn’t make much sense to describe a single number as not random
without reference to the process by which it was selected.

3Unlike the random functions described previously, this algorithm doesn’t require exponential space
because it is lazily defined, but the statefulness of this algorithm means that it cannot be shared by multiple
participants beforehand.

Lecture 6, Page 3

Construction 3.

on input z € {0,1}" :
if the record (z,y) exists in memory for any y :
output y
else :
y + {0,1}
store (z,y) in memory

output y

Because of the description of a random function is exponentially large, there is no
practical way to use one that accepts a polynomial number of bits as input.* We seek to
define a primitive that has behavior similar to that of a random function, and also has a
polynomial-size description. In some sense, what we want is analogous to a PRG, which
allows us to represent long “random looking” (i.e. pseudorandom) strings compactly.

However, the framework that we used to express the idea that pseudorandom strings
are indistinguishable from random strings will not work directly for pseudorandom func-
tions and random functions. In that framework, we provided the adversary with complete
descriptions of values sampled from the pseudorandom or random ensembles. It is trivial to
distinguish the description of a pseudorandom function (which we insist should be at most
polynomially large) from the description of a truly random one (which has size 2¢(")2").

Instead of giving a distinguisher D the descriptions of the functions, we must make D
distinguish the functions in use. In layman’s terms, suppose we have two black boxes. One
contains a random function, and the other contains a pseudorandom function. D should not
be able to identify which is which. We formalize this idea using Oracle Turing machines.

4 Oracle Indistinguishability

Definition 3 (Oracles, Oracle Machines, Oracle Queries). A NUPPT oracle machine M
has oracle access to f if M is augmented with a special tape on which it can write oracle
queries and receive answers. When M writes on the special tape, the oracle is activated, and
the Turing machine pauses while the oracle computes. When the oracle writes an answer
on the special tape, M resumes. This process is assumed to be instantaneous.

Note 1 (Oracles and Runtime). For the purposes of this course, we will assume that oracles
only output strings of length at most polynomial in the length of the queries that produce
them, and that querying an oracle doesn’t add to the runtime of M.

Note 2 (Notation for Oracles). M/ denotes a Turing machine M with oracle access to the
function f. If f accepts multiple arguments, we use () to denote the arguments that M
supplies in its queries; any arguments with fized values are unknown to M except insofar
as the outputs of f reveal them.

4Random functions with sufficiently small input spaces are an exception.

Lecture 6, Page 4

Example 2. Consider a three argument function f(a,b,c), and suppose we wish to fix the
values of a and b, but leave the value of ¢ free so that only the value of ¢ can be supplied by
M. We denote this by M7(@b) M does not learn a or b except insofar as they are revealed
by the output of f.

Definition 4 (Oracle Indistinguishability). Let {Op}nen and {O)}nen be ensembles of
distributions over functions of the form f : {0,1}1(") — {0,1}2(™) for two polynomials
01,0, We say that {Op}nen and {O),}nen are computationally oracle-indistinguishable if
VY NUPPT oracle machines D there exists some negligible function € such that ¥Vn € N

Pr[D/V(A") =1: f « 0,] —Pr[D/VA") =1: f « O0)]| < (n)

Note 3 (Notation for Oracle Indistinguishability). We will sometimes indicate that two
ensembles of distributions of functions are computationally oracle-indistinguishable by writ-
ing {Ontnen ~c {O) tnen. It should be clear from context that oracle indistinguishability is
meant, rather than computational indistinguishability of function descriptions.

5 Pseudorandom Functions

Definition 5 (Pseudorandom Function). For some polynomial { let F,, 4y be the set of all
functions f : {0,1}"* — {0,1}) and let {F}, : {0,1}* — {0, 1}€(|k|)}k€{0’1}* be a family of
functions. {F}reqo1)+ is pseudorandom function (PRF) family if

1. There exists some PPT algorithm F that computes Fy(x) given k and x
2. {Fk ik« {0, 1}n}n€N e {f D Fn,f(n)}neN

In other words no NUPPT algorithm should be able to distinguish between a function
sampled from the family F} and a random function.

Note 4 (Family Size, Description Size). Notice that |{ Fy.}reqo13n| = 27, whereas | Fy, yn)| =
212" " We can complactly describe Fy, using F' and the n-bit key k.

Definition 6 (Pseudorandom Permutation). For some polynomial £, a function family
{F - {0, 1}/* — {0, 1}£(|k|)}ke{0,1}* is a pseudorandom permutation (PRP) family if

1. It is a pseudorandom function family

2. It is a permutation; i.e Yk € {0,1}", F} is bijective and F,;l can be computed in
polynomial time.

Note 5 (Permutations and Functions). Asymptotically, it is not possible to distinguish
between a random permutation and a random function [, Lemma 1].

The proofs of the following theorems are left as exercises or for future lectures.
Theorem 2. 3 PRF = 3 PRG

Suppose F'is a PRF. Our PRG is G : s — Fs(0)||Fs(1)||Fs(2)]] - .-

Lecture 6, Page 5

Theorem 3. If there exists a PRF family {Fy : {0,1}/*l — {0, 1}|k|}ke{071}* then for any
polynomial £ there exists a PRF family {F}, : {0,1}* — {0, l}z(‘k‘)}ke{[)’l}*.

By Theorem 2 we can use F' to construct a PRG G : {0,1}" — {0,1}¥™. Our
polynomial-stretch PRF is F} : x — G(Fj(x))

Theorem 4. 3 PRG = 3 PRF

This famous theorem was proved by Goldreich, Goldwasser, and Micali |]

References

[BRO4] Mihir Bellare and Phillip Rogaway. Code-based game-playing proofs and the
security of triple encryption. Cryptology ePrint Archive, Paper 2004/331, 2004.

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. On the cryptographic ap-
plications of random functions. In Proceedings of CRYPTO 84 on Advances
in Cryptology, pages 276-288, New York, NY, USA, 1984. Springer-Verlag New
York, Inc.

Lecture 6, Page 6

	Topics Covered
	Review and Warm-up
	Random Functions
	Oracle Indistinguishability
	Pseudorandom Functions

