CS 6222 Grad Crypto September 9th, 2025

Lecture 5: Stretching Pseudorandomness
Lecturer: Jack Doerner Scribe: William Bradford

1 Topics Covered

e Review of Definitions and Lemmas

e One-Bit Stretch Implies Polynomial Stretch

2 Review of Definitions and Lemmas

Definition 1 (Pseudorandom Generator). Let U, be a the distribution over {0,1}". A
function G : {0,1}" — {0,1}™ is a PRG if all three of the following hold:

1. G is deterministic and polynomial time (implicitly, ¢(n) must be a polynomial)
2. 4l(u) >n
5. {G (Un)}neN ~e {Ué(n)}neN

Note 1 (Notational Shorthand). In the above definition G (U,) denotes the distribution
produced by applying the function G to samples drawn from U,. We will use this shorthand
notation from now on.

In a previous lecture, we gave a formal definition for the concept of computational
indistinguishability. The complementary condition is computational distinguishability. It
will we useful to write it out explicitly:

Definition 2 (Non-Negligible Function). We say that a function § : N — R U {0} is
non-negligible if 3¢ such that for infinitely many n € N, d(n) > %

Definition 3 (Computational Distinguishability). We say that some NUPPT algorithm
D distinguishes the ensemble X = { X, }nen from Y = {Yy}nen if there exists some non-
negligible function § such that for alln € N,

[Pr[D (1", X,)) = 1] - Pr[D (1", ¥;)) = 1]| > 3(n)

Note 2. We sometimes say that an algorithm D distinguishes a specific pair of distributions
X and Y. This means something slightly different than the above definition: it is not an
asymptotic statement and only makes sense with respect to some specific constant § such
that

|PriD(X)=1-Pr[D(Y)=1]| >
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Lemma 1 (The Hybrid Lemma). Let {X;};cp,, be a sequence of distributions. If there
exists some PPT algorithm D and € R such that

|Pr[D(1",X1) =1 -Pr[D(1", X,) =1] |> ¢
then 3i € [m — 1] such that
4]

m—1

[Pr[D (1%, X)) = 1] - Pr[D (1", X;p1) = 1] |

3 One-Bit Stretch Implies Polynomial Stretch

The two tools available to us in this proof are the hybrid lemma, and the PRG security of
G : {0,1}™ — {0,1}*!. Therefore, we want to find some G’ : {0,1}" — {0, 1}¥"™ such that
we can define a sequence of hybrid distributions with the following properties:

o Hy =G (Uy)
e H)' = Uy, (for some m to be defined)
e For all i € [m], some instance of G (U,) in H:™! is replaced by U1 in HY.

We'll call the distributions HY, and H:™! neighbors. Intuitively, if we define ensembles
of such distributions (i.e. H’ = {H: },,en) then neighbor ensembles H* and H/*! should be
computationally indistinguishable by the security of G and the closure of computational
indistinguishability under NUPPT post-processing.

Note 3 (Notation for Concatenation). al|b is the concatenation of a and b. So for example,
ifa = “pseudo”, b = “random”, a||b = “pseudorandom”. Similarly, we can use this notation
to indicate destructuring. If ¢ = 1011 and al|b := ¢ such that b € {0,1}, then a = 101 and
b=1.

Construction 1. Given G : {0,1}" — {0,1}"*! and polynomial ¢, define G’ : {0,1}" —
{0, 1Y) such that

G s b1 HbQH . Hbé(n) TXo = S,V’i S [ﬁ(u)},sz b; .= G(wi_l)

In other words, there are £(n) steps, and at the i*® step we use G to stretch an n-bit
value x;_; into an (n + 1)-bit value x;||b;. The single bit b; is contributed to the output of
G’, and the n-bit value z; is fed back into G to repeat the process.

Theorem 1. If G : {0,1}" — {0,1}""! is a PRG and { is a polynomial such that {(n) > n,
then G’ : {0,1}™ — {0,1}(") as specified in Construction 1 is also a PRG.

Proof Overview: Notice first of all that the number of recursive calls to G depends upon
n. It follows that the number of necessary hybrid distributions (the to-be-defined m above)
depends upon n. The following two ensembles are therefore not separated by a constant
number of hybrids:

HO = {Hg}nEN = {G, (Un)}nEN
H™ = {Hﬁ(n)}neN = {Ue(n)}neN
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For any fixed n, the number of neighbor distributions over which we must apply the hybrid
lemma is polynomial in n, but as n — oo, there are ¢(n) — oo neighbor distributions
between Hg and Hﬁ(n). We must therefore take care in setting up our proof to ensure we
only apply the hybrid lemma to polynomially-long sequences. The main steps are as follows:

1. Vi € N define the “hybrid experiment” H® = {H!},cy in a way that is consistent with
the criteria described above.

2. Use hybrid lemma to prove that if there exists any NUPPT algorithm D that dis-
tinguishes H° from H*> with non-negligible advantage, then there exists some non-
negligible function ¢ such that for infinitely many n € N there exists some i,, € [{(n)]
and some PPT algorithm D,, such that D,, distinguishes H:~! from H! with advantage
no less than 6(n).

3. Prove that if G is a PRG, then for all i € N*, H~! ~, H!. In particular, we will
prove that a lossless reduction exists.

4. Combine Steps 2 and 3 to complete the proof by contraposition: if G’ is not a PRG,
then there exists a NUPPT algorithm that distinguishes {G (Un)},,cry from {Uy ) }

eN
with non-negligible advantage, which implies that G is not a PRG. !

Proof of Theorem 1. We begin by defining our hybrid distributions, using a family of helper
functions G7 : {0,1}" — {0,1}" for i € N. For every n € N we have:

Gz~ o

G':x = b||GTH(x) : z||b = G(z) for i € NT
H! = U;||G"™ =" (U,,) for i € [0,4(n)]
H' = {1 for i € Ns.t. i > {(n)

Intuitively, each H! is the concatenation of a truly random i-bit number and a PRG
output of length ¢(n)—1i, where the input of the PRG is drawn from U,,. In other words, each
successive H! peels away an additional layer of recursion from G’, and replaces the output
bit produced by that layer with a uniformly-random bit. Once the output is completely
replaced by uniform bits (at step i = £(n)), further distributions H{ for i > £(n) are identical
(i.e. they all consist exclusively of uniform bits). These hybrids are illustrated in Figure 1.

Claim 1. If there exists some n € N, some algorithm D,,, and some function & such that
[Pr [Dn (H3) = 1] = Pr [Dy (HL) =1]| = ()
then there exists some i, € [{(n)] such that

n
(n)

Claim 2. If there exists some NUPPT algorithm D and some function § such that D
distinguishes H from H™ with advantage at least 5(n) for all n € N, then D,, = D(1",-)

satisfies Claim 1 with respect to §. Furthermore, there is a single fixed polynomial such that
the runtime of every D,, is bounded by that polynomial on n.

(=%
—~
~—

Pr [Dy (H ™) = 1] — Pr [y (i) = 1] >

~
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Figure 1: Illustration of the hybrid distributions used in the proof of Theorem 1

Note that the first two claims, above, follow directly from applying the hybrid lemma to
the hybrid distributions and ensembles we have defined above. Next we consider a reduction
R! that uses any distinguisher for the neighbor distributions defined above to break the
security of G. Claim 3 establishes that the reduction is lossless.

Construction 2 (R : {0,1}"+! — {0,1}"). On input x, R:, does the following:
1. Let 2'||b:=x
2. Sample y + U;_1
3. Output y||b||GX™M = ()
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Claim 3. Fori € [{(n)],

R, (G (Un)) = Hy
Ry, (Un+1))

i
=

Combining Claim 3 with the fact that H! = H™ when i > ¢(n), we can see that the
PRG security of G implies that H'~! a2, H! for i € N*.! Combining Claims 1 and 3 yields:

Claim 4. If there exists some n € N, some algorithm D, and some function § such that
[P [Dy (HY) =1] = Pr [ D, (™) = 1]| = 5(n)

then there exists some i, € [{(n)] such that

(o9
—~

n)
(n)

Now we can combine Claims 4 and 1 with the fact that GG is polynomial time to find:

Pr[Dy (Ry (G (Un))) = 1] = Pr [Dy (B (Unt1))) = 1]| 2

~

Claim 5. If there exists some NUPPT algorithm D and some non-negligible function 0
such that for alln € N,

Pr[D (1% 1Y) =1] = Pr[D (1" Hi™) = 1] | = 6(n)

Then there exists some NUPPT algorithm D'? such that for all n € N,

<
—~
SN—

(n)

Finally, we observe that since ¢ is a polynomial, §(n)/¢(n) is negligible if and only if
d(n) is negligible. From this fact and the contraposition of Claim 5 it follows that

|Pr[D' (1",G(Uy)) =1] = Pr [D' (1", Upy1) = 1]| >

~

{G(Un)}neN e {Un+1}neN = H’ ~e 1™ = {G,(Un)}neN ~e {Uf(n)}neN

and thus if G is a PRG, then G’ is one as well. L]

IThis fact is not important for the rest of the proof, but we mention it in order to make it clear that
Claim 3 corresponds to Step 3 of the proof overview.

*We can construct D’ by taking the values of i, in Claim 4 to be advice. That is, D’ = {D}, }nen such
that D;, = D (1", R;* (-))

Lecture 5, Page 5



	Topics Covered
	Review of Definitions and Lemmas
	One-Bit Stretch Implies Polynomial Stretch

