CS 6222 Grad Crypto

September 9th, 2025

Lecture 5: Stretching Pseudorandomness

Lecturer: Jack Doerner Scribe: William Bradford

1 Topics Covered

• Review of Definitions and Lemmas

• One-Bit Stretch Implies Polynomial Stretch

2 Review of Definitions and Lemmas

Definition 1 (Pseudorandom Generator). Let U_n be a the distribution over $\{0,1\}^n$. A function $G: \{0,1\}^n \to \{0,1\}^{\ell(n)}$ is a PRG if all three of the following hold:

- 1. G is deterministic and polynomial time (implicitly, $\ell(n)$ must be a polynomial)
- 2. $\ell(u) > n$
- 3. $\{G(U_n)\}_{n\in\mathbb{N}} \approx_c \{U_{\ell(n)}\}_{n\in\mathbb{N}}$

Note 1 (Notational Shorthand). In the above definition $G(U_n)$ denotes the distribution produced by applying the function G to samples drawn from U_n . We will use this shorthand notation from now on.

In a previous lecture, we gave a formal definition for the concept of computational indistinguishability. The complementary condition is computational *distinguishability*. It will we useful to write it out explicitly:

Definition 2 (Non-Negligible Function). We say that a function $\delta : \mathbb{N} \to \mathbb{R}^+ \cup \{0\}$ is non-negligible if $\exists c$ such that for infinitely many $n \in \mathbb{N}$, $\delta(n) \geq \frac{1}{n^c}$.

Definition 3 (Computational Distinguishability). We say that some NUPPT algorithm D distinguishes the ensemble $\mathcal{X} = \{X_n\}_{n \in \mathbb{N}}$ from $\mathcal{Y} = \{Y_n\}_{n \in \mathbb{N}}$ if there exists some non-negligible function δ such that for all $n \in \mathbb{N}$,

$$\left|\Pr\left[D\left(1^{n}, X_{n}\right) = 1\right] - \Pr\left[D\left(1^{n}, Y_{n}\right) = 1\right]\right| \ge \delta(n)$$

Note 2. We sometimes say that an algorithm D distinguishes a specific pair of distributions X and Y. This means something slightly different than the above definition: it is not an asymptotic statement and only makes sense with respect to some specific constant δ such that

$$\left|\Pr\left[D\left(X\right)=1\right]-\Pr\left[D\left(Y\right)=1\right]\right|\geq\delta$$

Lemma 1 (The Hybrid Lemma). Let $\{X_i\}_{i\in[m]}$ be a sequence of distributions. If there exists some PPT algorithm D and $\delta \in \mathbb{R}$ such that

$$|\Pr[D(1^n, X_1) = 1] - \Pr[D(1^n, X_m) = 1]| \ge \delta$$

then $\exists i \in [m-1]$ such that

$$|\Pr[D(1^n, X_i) = 1] - \Pr[D(1^n, X_{i+1}) = 1]| \ge \frac{\delta}{m-1}$$

3 One-Bit Stretch Implies Polynomial Stretch

The two tools available to us in this proof are the hybrid lemma, and the PRG security of $G: \{0,1\}^n \to \{0,1\}^{n+1}$. Therefore, we want to find some $G': \{0,1\}^n \to \{0,1\}^{\ell(n)}$ such that we can define a sequence of hybrid distributions with the following properties:

- $\bullet \ H_n^0 = G'(U_n)$
- $H_n^m = U_{\ell(n)}$ (for some m to be defined)
- For all $i \in [m]$, some instance of $G(U_n)$ in H_n^{i-1} is replaced by U_{n+1} in H_n^i .

We'll call the distributions H_n^i and H_n^{i+1} neighbors. Intuitively, if we define ensembles of such distributions (i.e. $\mathcal{H}^i = \{H_n^i\}_{n \in \mathbb{N}}$) then neighbor ensembles \mathcal{H}^i and \mathcal{H}^{i+1} should be computationally indistinguishable by the security of G and the closure of computational indistinguishability under NUPPT post-processing.

Note 3 (Notation for Concatenation). $a\|b$ is the concatenation of a and b. So for example, if a = ``pseudo'', b = ``random'', $a\|b = \text{``pseudorandom''}$. Similarly, we can use this notation to indicate destructuring. If c = 1011 and $a\|b := c$ such that $b \in \{0,1\}$, then a = 101 and b = 1.

Construction 1. Given $G: \{0,1\}^n \to \{0,1\}^{n+1}$ and polynomial ℓ , define $G': \{0,1\}^n \to \{0,1\}^{\ell(n)}$ such that

$$G': s \mapsto b_1 \|b_2\| \dots \|b_{\ell(n)}: x_0 := s, \forall i \in [\ell(u)], x_i \|b_i := G(x_{i-1})$$

In other words, there are $\ell(n)$ steps, and at the i^{th} step we use G to stretch an n-bit value x_{i-1} into an (n+1)-bit value $x_i||b_i$. The single bit b_i is contributed to the output of G', and the n-bit value x_i is fed back into G to repeat the process.

Theorem 1. If $G: \{0,1\}^n \to \{0,1\}^{n+1}$ is a PRG and ℓ is a polynomial such that $\ell(n) > n$, then $G': \{0,1\}^n \to \{0,1\}^{\ell(n)}$ as specified in Construction 1 is also a PRG.

Proof Overview: Notice first of all that the number of recursive calls to G depends upon n. It follows that the number of necessary hybrid distributions (the to-be-defined m above) depends upon n. The following two ensembles are therefore not separated by a constant number of hybrids:

$$\mathcal{H}^{0} = \left\{ H_{n}^{0} \right\}_{n \in \mathbb{N}} = \left\{ G'\left(U_{n}\right) \right\}_{n \in \mathbb{N}}$$
$$\mathcal{H}^{\infty} = \left\{ H_{n}^{\ell(n)} \right\}_{n \in \mathbb{N}} = \left\{ U_{\ell(n)} \right\}_{n \in \mathbb{N}}$$

For any fixed n, the number of neighbor distributions over which we must apply the hybrid lemma is polynomial in n, but as $n \to \infty$, there are $\ell(n) \to \infty$ neighbor distributions between H_n^0 and $H_n^{\ell(n)}$. We must therefore take care in setting up our proof to ensure we only apply the hybrid lemma to polynomially-long sequences. The main steps are as follows:

- 1. $\forall i \in \mathbb{N}$ define the "hybrid experiment" $\mathcal{H}^i = \{H_n^i\}_{n \in \mathbb{N}}$ in a way that is consistent with the criteria described above.
- 2. Use hybrid lemma to prove that if there exists any NUPPT algorithm D that distinguishes \mathcal{H}^0 from \mathcal{H}^{∞} with non-negligible advantage, then there exists some non-negligible function δ such that for infinitely many $n \in \mathbb{N}$ there exists some $i_n \in [\ell(n)]$ and some PPT algorithm D_n such that D_n distinguishes H_n^{i-1} from H_n^i with advantage no less than $\delta(n)$.
- 3. Prove that if G is a PRG, then for all $i \in \mathbb{N}^+$, $\mathcal{H}^{i-1} \approx_c \mathcal{H}^i$. In particular, we will prove that a lossless reduction exists.
- 4. Combine Steps 2 and 3 to complete the proof by contraposition: if G' is not a PRG, then there exists a NUPPT algorithm that distinguishes $\{G(U_n)\}_{n\in\mathbb{N}}$ from $\{U_{\ell(n)}\}_{n\in\mathbb{N}}$ with non-negligible advantage, which implies that G is not a PRG.

Proof of Theorem 1. We begin by defining our hybrid distributions, using a family of helper functions $G^i: \{0,1\}^n \to \{0,1\}^{n+1}$ for $i \in \mathbb{N}$. For every $n \in \mathbb{N}$ we have:

$$G^{0}: x \mapsto \varnothing$$

$$G^{i}: x \mapsto b \| G^{i-1}(x): x \| b := G(x) \qquad \text{for } i \in \mathbb{N}^{+}$$

$$H_{n}^{i} = U_{i} \| G^{\ell(n)-i}(U_{n}) \qquad \text{for } i \in [0, \ell(n)]$$

$$H_{n}^{i} = H_{n}^{i-1} \qquad \text{for } i \in \mathbb{N} \text{ s.t. } i > \ell(n)$$

Intuitively, each H_n^i is the concatenation of a truly random *i*-bit number and a PRG output of length $\ell(n)-i$, where the input of the PRG is drawn from U_n . In other words, each successive H_n^i peels away an additional layer of recursion from G', and replaces the output bit produced by that layer with a uniformly-random bit. Once the output is completely replaced by uniform bits (at step $i = \ell(n)$), further distributions H_n^i for $i > \ell(n)$ are identical (i.e. they all consist exclusively of uniform bits). These hybrids are illustrated in Figure 1.

Claim 1. If there exists some $n \in \mathbb{N}$, some algorithm D_n , and some function δ such that

$$\left| \Pr \left[D_n \left(H_n^0 \right) = 1 \right] - \Pr \left[D_n \left(H_n^{\ell(n)} \right) = 1 \right] \right| \ge \delta(n)$$

then there exists some $i_n \in [\ell(n)]$ such that

$$\left| \Pr \left[D_n \left(H_n^{i_n - 1} \right) = 1 \right] - \Pr \left[D_n \left(H_n^{i_n} \right) = 1 \right] \right| \ge \frac{\delta(n)}{\ell(n)}$$

Claim 2. If there exists some NUPPT algorithm D and some function δ such that D distinguishes \mathcal{H}^0 from \mathcal{H}^{∞} with advantage at least $\delta(n)$ for all $n \in \mathbb{N}$, then $D_n = D(1^n, \cdot)$ satisfies Claim 1 with respect to δ . Furthermore, there is a single fixed polynomial such that the runtime of every D_n is bounded by that polynomial on n.

Figure 1: Illustration of the hybrid distributions used in the proof of Theorem 1

Note that the first two claims, above, follow directly from applying the hybrid lemma to the hybrid distributions and ensembles we have defined above. Next we consider a reduction R_n^i that uses any distinguisher for the neighbor distributions defined above to break the security of G. Claim 3 establishes that the reduction is lossless.

Construction 2 $(R_n^i: \{0,1\}^{n+1} \to \{0,1\}^{\ell(n)})$. On input x, R_n^i does the following:

- 1. Let x' || b := x
- 2. Sample $y \leftarrow U_{i-1}$
- 3. Output $y||b||G^{\ell(n)-i}(x')$

Claim 3. For $i \in [\ell(n)]$,

$$R_n^i(G(U_n)) = H_n^{i-1}$$
$$R_n^i(U_{n+1}) = H_n^i$$

Combining Claim 3 with the fact that $H_n^i = H_n^{\ell(n)}$ when $i \geq \ell(n)$, we can see that the PRG security of G implies that $\mathcal{H}^{i-1} \approx_c \mathcal{H}^i$ for $i \in \mathbb{N}^+$. Combining Claims 1 and 3 yields:

Claim 4. If there exists some $n \in \mathbb{N}$, some algorithm D_n , and some function δ such that

$$\left| \Pr \left[D_n \left(H_n^0 \right) = 1 \right] - \Pr \left[D_n \left(H_n^{\ell(n)} \right) = 1 \right] \right| \ge \delta(n)$$

then there exists some $i_n \in [\ell(n)]$ such that

$$\left| \Pr \left[D_n \left(R_n^{i_n} \left(G \left(U_n \right) \right) \right) = 1 \right] - \Pr \left[D_n \left(R_n^{i_n} \left(U_{n+1} \right) \right) \right) = 1 \right] \right| \ge \frac{\delta(n)}{\ell(n)}$$

Now we can combine Claims 4 and 1 with the fact that G is polynomial time to find:

Claim 5. If there exists some NUPPT algorithm D and some non-negligible function δ such that for all $n \in \mathbb{N}$,

$$\left| \Pr \left[D \left(1^n, H_n^0 \right) = 1 \right] - \Pr \left[D \left(1^n, H_n^{\ell(n)} \right) = 1 \right] \right| \ge \delta(n)$$

Then there exists some NUPPT algorithm D'^2 such that for all $n \in \mathbb{N}$,

$$|\Pr[D'(1^n, G(U_n)) = 1] - \Pr[D'(1^n, U_{n+1}) = 1]| \ge \frac{\delta(n)}{\ell(n)}$$

Finally, we observe that since ℓ is a polynomial, $\delta(n)/\ell(n)$ is negligible if and only if $\delta(n)$ is negligible. From this fact and the contraposition of Claim 5 it follows that

$$\{G(U_n)\}_{n\in\mathbb{N}} \approx_c \{U_{n+1}\}_{n\in\mathbb{N}} \Rightarrow \mathcal{H}^0 \approx_c \mathcal{H}^\infty \Rightarrow \{G'(U_n)\}_{n\in\mathbb{N}} \approx_c \{U_{\ell(n)}\}_{n\in\mathbb{N}}$$

and thus if G is a PRG, then G' is one as well.

¹This fact is not important for the rest of the proof, but we mention it in order to make it clear that Claim 3 corresponds to Step 3 of the proof overview.

²We can construct D' by taking the values of i_n in Claim 4 to be advice. That is, $D' = \{D'_n\}_{n \in \mathbb{N}}$ such that $D'_n = D\left(1^n, R_n^{i_n}(\cdot)\right)$