
CS 6222 Grad Crypto September 9th, 2025

Lecture 5: Stretching Pseudorandomness

Lecturer: Jack Doerner Scribe: William Bradford

1 Topics Covered

• Review of Definitions and Lemmas

• One-Bit Stretch Implies Polynomial Stretch

2 Review of Definitions and Lemmas

Definition 1 (Pseudorandom Generator). Let Un be a the distribution over {0, 1}n. A
function G : {0, 1}n → {0, 1}ℓ(n) is a PRG if all three of the following hold:

1. G is deterministic and polynomial time (implicitly, ℓ(n) must be a polynomial)

2. ℓ(u) > n

3. {G (Un)}n∈N ≈c

{
Uℓ(n)

}
n∈N

Note 1 (Notational Shorthand). In the above definition G (Un) denotes the distribution
produced by applying the function G to samples drawn from Un. We will use this shorthand
notation from now on.

In a previous lecture, we gave a formal definition for the concept of computational
indistinguishability. The complementary condition is computational distinguishability. It
will we useful to write it out explicitly:

Definition 2 (Non-Negligible Function). We say that a function δ : N −→ R+ ∪ {0} is
non-negligible if ∃c such that for infinitely many n ∈ N, δ(n) ≥ 1

nc .

Definition 3 (Computational Distinguishability). We say that some NUPPT algorithm
D distinguishes the ensemble X = {Xn}n∈N from Y = {Yn}n∈N if there exists some non-
negligible function δ such that for all n ∈ N,

|Pr [D (1n, Xn) = 1]− Pr [D (1n, Yn) = 1]| ≥ δ(n)

Note 2. We sometimes say that an algorithm D distinguishes a specific pair of distributions
X and Y . This means something slightly different than the above definition: it is not an
asymptotic statement and only makes sense with respect to some specific constant δ such
that

|Pr [D (X) = 1]− Pr [D (Y ) = 1]| ≥ δ
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Lemma 1 (The Hybrid Lemma). Let {Xi}i∈[m] be a sequence of distributions. If there
exists some PPT algorithm D and δ ∈ R such that

| Pr [D (1n, X1) = 1]− Pr [D (1n, Xm) = 1] |≥ δ

then ∃i ∈ [m− 1] such that

|Pr [D (1n, Xi) = 1]− Pr [D (1n, Xi+1) = 1] | ≥ δ

m− 1

3 One-Bit Stretch Implies Polynomial Stretch

The two tools available to us in this proof are the hybrid lemma, and the PRG security of
G : {0, 1}n → {0, 1}n+1. Therefore, we want to find some G′ : {0, 1}n → {0, 1}ℓ(n) such that
we can define a sequence of hybrid distributions with the following properties:

• H0
n = G′ (Un)

• Hm
n = Uℓ(n) (for some m to be defined)

• For all i ∈ [m], some instance of G (Un) in H i−1
n is replaced by Un+1 in H i

n.

We’ll call the distributions H i
n and H i+1

n neighbors. Intuitively, if we define ensembles
of such distributions (i.e. Hi = {H i

n}n∈N) then neighbor ensembles Hi and Hi+1 should be
computationally indistinguishable by the security of G and the closure of computational
indistinguishability under NUPPT post-processing.

Note 3 (Notation for Concatenation). a∥b is the concatenation of a and b. So for example,
if a = “pseudo”, b = “random”, a∥b = “pseudorandom”. Similarly, we can use this notation
to indicate destructuring. If c = 1011 and a∥b := c such that b ∈ {0, 1}, then a = 101 and
b = 1.

Construction 1. Given G : {0, 1}n → {0, 1}n+1 and polynomial ℓ, define G′ : {0, 1}n →
{0, 1}ℓ(n) such that

G′ : s 7→ b1 ∥b2∥ . . .
∥∥bℓ(n) : x0 := s,∀i ∈ [ℓ(u)], xi

∥∥ bi := G (xi−1)

In other words, there are ℓ(n) steps, and at the ith step we use G to stretch an n-bit
value xi−1 into an (n+ 1)-bit value xi∥bi. The single bit bi is contributed to the output of
G′, and the n-bit value xi is fed back into G to repeat the process.

Theorem 1. If G : {0, 1}n → {0, 1}n+1 is a PRG and ℓ is a polynomial such that ℓ(n) > n,
then G′ : {0, 1}n → {0, 1}ℓ(n) as specified in Construction 1 is also a PRG.

Proof Overview: Notice first of all that the number of recursive calls to G depends upon
n. It follows that the number of necessary hybrid distributions (the to-be-defined m above)
depends upon n. The following two ensembles are therefore not separated by a constant
number of hybrids:

H0 =
{
H0

n

}
n∈N =

{
G′ (Un)

}
n∈N

H∞ =
{
Hℓ(n)

n

}
n∈N

=
{
Uℓ(n)

}
n∈N
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For any fixed n, the number of neighbor distributions over which we must apply the hybrid
lemma is polynomial in n, but as n → ∞, there are ℓ(n) → ∞ neighbor distributions

between H0
n and H

ℓ(n)
n . We must therefore take care in setting up our proof to ensure we

only apply the hybrid lemma to polynomially-long sequences. The main steps are as follows:

1. ∀i ∈ N define the “hybrid experiment” Hi = {H i
n}n∈N in a way that is consistent with

the criteria described above.

2. Use hybrid lemma to prove that if there exists any NUPPT algorithm D that dis-
tinguishes H0 from H∞ with non-negligible advantage, then there exists some non-
negligible function δ such that for infinitely many n ∈ N there exists some in ∈ [ℓ(n)]
and some PPT algorithmDn such thatDn distinguishesH i−1

n fromH i
n with advantage

no less than δ(n).

3. Prove that if G is a PRG, then for all i ∈ N+, Hi−1 ≈c Hi. In particular, we will
prove that a lossless reduction exists.

4. Combine Steps 2 and 3 to complete the proof by contraposition: if G′ is not a PRG,
then there exists a NUPPT algorithm that distinguishes {G (Un)}n∈N from

{
Uℓ(n)

}
n∈N

with non-negligible advantage, which implies that G is not a PRG.

Proof of Theorem 1. We begin by defining our hybrid distributions, using a family of helper
functions Gi : {0, 1}n → {0, 1}n+1 for i ∈ N. For every n ∈ N we have:

G0 : x 7→ ∅
Gi : x 7→ b∥Gi−1(x) : x∥b := G(x) for i ∈ N+

H i
n = Ui∥Gℓ(n)−i (Un) for i ∈ [0, ℓ(n)]

H i
n = H i−1

n for i ∈ N s.t. i > ℓ(n)

Intuitively, each H i
n is the concatenation of a truly random i-bit number and a PRG

output of length ℓ(n)−i, where the input of the PRG is drawn from Un. In other words, each
successive H i

n peels away an additional layer of recursion from G′, and replaces the output
bit produced by that layer with a uniformly-random bit. Once the output is completely
replaced by uniform bits (at step i = ℓ(n)), further distributionsH i

n for i > ℓ(n) are identical
(i.e. they all consist exclusively of uniform bits). These hybrids are illustrated in Figure 1.

Claim 1. If there exists some n ∈ N, some algorithm Dn, and some function δ such that∣∣∣Pr [Dn

(
H0

n

)
= 1

]
− Pr

[
Dn

(
Hℓ(n)

n

)
= 1

]∣∣∣ ≥ δ(n)

then there exists some in ∈ [ℓ(n)] such that∣∣Pr [Dn

(
H in−1

n

)
= 1

]
− Pr

[
Dn

(
H in

n

)
= 1

]∣∣ ≥ δ(n)

ℓ(n)

Claim 2. If there exists some NUPPT algorithm D and some function δ such that D
distinguishes H0 from H∞ with advantage at least δ(n) for all n ∈ N, then Dn = D(1n, ·)
satisfies Claim 1 with respect to δ. Furthermore, there is a single fixed polynomial such that
the runtime of every Dn is bounded by that polynomial on n.
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Figure 1: Illustration of the hybrid distributions used in the proof of Theorem 1

Note that the first two claims, above, follow directly from applying the hybrid lemma to
the hybrid distributions and ensembles we have defined above. Next we consider a reduction
Ri

n that uses any distinguisher for the neighbor distributions defined above to break the
security of G. Claim 3 establishes that the reduction is lossless.

Construction 2 (Ri
n : {0, 1}n+1 → {0, 1}ℓ(n)). On input x, Ri

n does the following:

1. Let x′∥b := x

2. Sample y ← Ui−1

3. Output y∥b∥Gℓ(n)−i (x′)
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Claim 3. For i ∈ [ℓ(n)],

Ri
n (G (Un)) = H i−1

n

Ri
n(Un+1)) = H i

n

Combining Claim 3 with the fact that H i
n = H

ℓ(n)
n when i ≥ ℓ(n), we can see that the

PRG security of G implies that Hi−1 ≈c Hi for i ∈ N+.1 Combining Claims 1 and 3 yields:

Claim 4. If there exists some n ∈ N, some algorithm Dn, and some function δ such that∣∣∣Pr [Dn

(
H0

n

)
= 1

]
− Pr

[
Dn

(
Hℓ(n)

n

)
= 1

]∣∣∣ ≥ δ(n)

then there exists some in ∈ [ℓ(n)] such that

∣∣Pr [Dn

(
Rin

n (G (Un))
)
= 1

]
− Pr

[
Dn

(
Rin

n (Un+1))
)
= 1

]∣∣ ≥ δ(n)

ℓ(n)

Now we can combine Claims 4 and 1 with the fact that G is polynomial time to find:

Claim 5. If there exists some NUPPT algorithm D and some non-negligible function δ
such that for all n ∈ N,∣∣∣Pr [D (

1n, H0
n

)
= 1

]
− Pr

[
D

(
1n, Hℓ(n)

n

)
= 1

]∣∣∣ ≥ δ(n)

Then there exists some NUPPT algorithm D′2 such that for all n ∈ N,

∣∣Pr [D′ (1n, G(Un)) = 1
]
− Pr

[
D′ (1n, Un+1) = 1

]∣∣ ≥ δ(n)

ℓ(n)

Finally, we observe that since ℓ is a polynomial, δ(n)/ℓ(n) is negligible if and only if
δ(n) is negligible. From this fact and the contraposition of Claim 5 it follows that

{G(Un)}n∈N ≈c {Un+1}n∈N ⇒ H
0 ≈c H∞ ⇒

{
G′(Un)

}
n∈N ≈c

{
Uℓ(n)

}
n∈N

and thus if G is a PRG, then G′ is one as well.

1This fact is not important for the rest of the proof, but we mention it in order to make it clear that
Claim 3 corresponds to Step 3 of the proof overview.

2We can construct D′ by taking the values of in in Claim 4 to be advice. That is, D′ = {D′
n}n∈N such

that D′
n = D

(
1n, Rin

n (·)
)
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