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Lecture 4: Properties of Computational Indistinguishability
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1 Topics Covered

• Useful Lemmas about Computational Indistinguishability

• Pseudorandom Generators Imply P̸=NP

Note 1. If a distinguisher cannot tell the difference between two distributions, then they
are indistinguishable. This concept can be formalized as the following definition.

2 Computational Indistinguishability

Definition 1 (Computational Indistinguishability). Let X = {Xn}n∈N and Y = {Yn}n∈N
be ensembles such that, ∀n ∈ N, Xn and Yn are distributions on {0, 1}ℓ(n) for polynomial ℓ.
With that in mind, X and Y are computationally indistinguishable if and only if, ∀ NUPPT
(Non-Uniform Probabilistic Polynomial-Time) distinguishers D, there ∃ a negligible ε such
that, ∀n ∈ N

|Pr[D(1n, t) = 1 : t← Xn]− Pr[D(1n, t) = 1 : t← Yn]| < ε(n)

To start explaining the equation, here’s the following clarification,

• t represents a random sample from the distribution (e.g., Xn or Yn), and

• D(1n, t) = 1 represents the event that the distinguisher D, given t and a unary
encoding of the security parameter n, outputs 1. An output of 1 does not indicate
anything in particular.

With all that said, the equation essentially states that the absolute difference of the proba-
bilities of the distinguisher figuring out that a sample is from one distribution and another
distribution is less than negligible ε or simply negligible. This means, for all distinguishers,
that they cannot tell which distribution a sample is from at all.

Note 2. The notation for computation indistinguishability between two ensembles is the
following: X ≈c Y.

Note 3. The definition for computational indistinguishability requires that for some n0 and
every n > n0, the two distributions Xn and Yn pass all efficient statistical tests that might be
used to distinguish them. For example, a statistical test for distinguishing whether a sample
comes from the uniform distribution or some other distribution might include:
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• Checking that there are roughly as many 0 as 1 in the sample.

• Checking that each sequence of bits occurs with roughly the same probability.

• Checking that given any prefix of a sample, some strategy for guessing the next bit
succeeds with probability roughly 1/2.1

Theorem 1 (Computational Indistinguishability is Closed Under NUPPT Post-process-
ing). If {Xn}n∈N ≈c {Yn}n∈N, then ∀ NUPPT machines M , {M(Xn)}n∈N ≈c {M(Yn)}n∈N.

Proof. Suppose towards contradiction that there ∃ NUPPT D, polynomial p such that p(n)
is positive as n→∞ and

|Pr[D(1n, t) = 1 : t←M(Xn)]− Pr[D(1n, t) = 1 : t←M(Yn)]| ≥
1

p(n)

for infinitely many n ∈ N.2 With that said, let R be a reduction such that R(1n, u) =
D(1n,M(u)). Consider the advantage of R in distinguishing X from Y. For infinitely many
n ∈ N,

|Pr[R(1n, u) = 1 : u← Xn]− Pr[R(1n, u) = 1 : u← Yn]|
= |Pr[D(1n,M(u)) = 1 : u← Xn]− Pr[D(1n,M(u)) = 1 : u← Yn]| by the def. of R

= |Pr[D(1n, t) = 1 : t←M(Xn)]− Pr[D(1n, t) = 1 : t←M(Yn)]| by rearrangement

≥ 1

p(n)
by our supposition

This contradicts the computational indistinguishability of X and Y. Therefore, no such D
with a non-negligible distinguishing advantage can exist, and the theorem follows.

Theorem 2 (Computational Indistinguishability is Transitive). Let {Xi}i∈[m] be a sequence
of distributions for some constant m. If ∃ any distinguisher D3 and any non-negative
constant ε such that

|Pr[D(x) = 1 : x← X1]− Pr[D(x) = 1 : x← Xm]| ≥ ε (1)

then ∃ i ∈ [m− 1] such that

|Pr[D(x) = 1 : x← Xi]− Pr[D(x) = 1 : x← Xi+1]| ≥ ε

m− 1
1If this holds for all prefixes, and all strategies, it is known as the Next-Bit Test. The next-bit test is

complete for all statistical tests [Ps10, Theorem 75.4].
2M(Xn) and M(Yn) represent distributions induced by applying M to samples from distributions Xn

and Yn respectively. Meanwhile, since p(n) is a polynomial, 1
p(n)

is a non-negligible quantity. This statement
communicates that D outputs 1 with non-negligibly greater or lesser probability when given samples from
M(Xn) than when given samples from the M(Yn), or in other words it violates computational indistin-
guishability, or simply it distinguishes.

3Not necessarily bounded.
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Proof. Let pi = Pr[D(x) = 1 : x← Xi], and suppose toward contradiction that ∀ i ∈ [m−1]
we have |pi − pi+1| < ε

m−1 . It follows that

m−1∑
i=1

(|pi − pi+1|) < (m− 1) · ε

m− 1
= ε.

The summation on the left hand side can be expanded in the following way:

|p1 − p2|+ |p2 − p3|+ · · ·+ |pm−1 − pm|
≥ |p1 − p2 + p2 − p3 + · · ·+ pm−1 − pm| by the triangle inequality [Wei25]

= |p1 − pm|

which then implies that

|p1 − pm| < ε

in contradiction to Equation 1. Therefore, if |p1 − pm| ≥ ε, then ∃i ∈ [m − 1] such that
|pi − pi+1| ≥ ε

m−1 .

Note 4 (On the Uses of Theorem 2). To help you understand why this theorem is useful,
consider the sequence of ensembles {X i}i∈[m] such that ∀i ∈ [m], X i = {Xi

n}n∈N. If there
exists some NUPPD distinguisher D and some polynomial p such that p(n) is positive as
n→∞ and for infinitely many n ∈ N

|Pr[D(x) = 1 : x← X1
n]− Pr[D(x) = 1 : x← Xm

n ]| ≥ 1

p(n)

then by Theorem 2, for infinitely many n ∈ N there exists some in ∈ [m− 1] such that

|Pr[D(x) = 1 : x← Xin
n ]− Pr[D(x) = 1 : x← Xin+1

n ]| ≥ 1

(m− 1) · p(n)
.

Since 1/p(n) is non-negligible and m is constant, 1/((m − 1) · p(n)) is also non-negligible,
and therefore if D can distinguish X 1 from Xm then there exists some i ∈ [m− 1] such that
D can distinguish X i from X i+1.

Corollary 1. If X ≈c Y and Y ≈c Z, then X ≈c Z.

In other words, if no efficient distinguisher or algorithm can tell the difference between
X and Y or Y and Z, then none can tell the difference between X and Z.

Theorem 3 (Prediction Lemma). Let ℓ be a polynomial and let X b = {Xb
n}n∈N for b =

{0, 1} be defined such that Xb
n is a distribution on {0, 1}ℓ(n). X 0 ≈c X 1 if and only if ∀

NUPPT prediction algorithms A, ∃ some negligible function ε such that ∀n ∈ N,∣∣∣∣Pr[(A(1n, t) = b : b← {0, 1}, t← Xb
n]−

1

2

∣∣∣∣ < ε(n) (2)
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Proof. We can see that the if direction of the theorem holds by contraposition: if there exists
some A satisfying Equation 2, then it trivially distinguishes X 0 from X 1. The remainder of
the proof deals with the only if direction by contraposition; i.e. we will show that if there
exists any NUPPT D that distinguishes X 0 from X 1 with non-negligible advantage, then
there exists some A violating Equation 2.

Suppose without loss of generality4 that ∃ a NUPPT distinguisherD and a non-negligible
function µ such that

|Pr[D(1n, t) : t← X1
n]− Pr[D(1n, t) : t← X0

n]| > µ(n) (3)

and consider what happens if we use D to predict whether a sample came from X 0 or X 1:

Pr[D(1n, t) = b : b← {0, 1}, t← Xb
n]

=
1

2
(Pr[D(1n, t) = 1 : t← X1

n] + Pr[D(1n, t) ̸= 1 : t← X0
n])

=
1

2
(Pr[D(1n, t) = 1 : t← X1

n] + 1− Pr[D(1n, t) = 1 : t← X0
n])

1

2
+

1

2
(Pr[D(1n, t) : t← X1

n]− Pr[D(1n, t) : t← X0
n])

>
1

2
+

µ(n)

2
by plugging in Eqn. 3

Note that the prediction advantage µ(n)
2 is non-negligible, since µ(n) is.

Note 5 (On the Meaning of Theorem 3). One way to read this theorem is that there is an
algorithm to tell with non-negligible advantage which of two distributions a sample came from
if and only if there is an algorithm that distinguishes the distributions with non-negligible
advantage, or: good distinguishers imply good predictors and vice versa.

3 Pseudo-random Generator

Definition 2 (Pseudorandom Generator (PRG)). Let Un be the uniform distribution on
{0, 1}n and let ℓ be a polynomial. The function G : {0, 1}n → {0, 1}ℓ(n) is a PRG if:

• ℓ(n) > n 5

• G is deterministic and runs in polynomial time

• {G(x) : x← Un}n∈N ≈c {Uℓ(n)}n∈N

4If instead there exists D′ such that

|Pr[D′(1n, t) : t← X0
n]− Pr[D′(1n, t) : t← X1

n]| > µ(n)

then we can construct D from D′ by inverting the output.
5G expands its input to be larger than n
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Theorem 4. If there ∃ a PRG, then P ̸= NP.

Proof. Given a PRG G : {0, 1}n → {0, 1}ℓ(n), let language L = image(G) = {G(x) : x ∈
{0, 1}∗}, ∀ y ∈ L, ∃ a witness x such that G(x) = y. G efficiently verifies membership
in L given a witness, and thus L ∈ NP. Suppose towards contradiction that L ∈ P. By
the definition of polynomial-time-recognizable languages, ∃ a polynomial-time algorithm A
such that A(y) = 1 ⇐⇒ y ∈ L. It follows ∀n ∈ N that

Pr[A(G(x)) = 1 : x← {0, 1}n] = 1

and
Pr[A(y) = 1 : y ← ({0, 1}ℓ(n) \ {G(x) : x ∈ {0, 1}n})] = 0

which contradicts the PRG security of G. Therefore, L /∈ P and P ̸= NP.
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