CS 6222 Grad Crypto September 4, 2025

Lecture 4: Properties of Computational Indistinguishability

Lecturer: Jack Doerner Scribe: Sabrina Lopez

1 Topics Covered

e Useful Lemmas about Computational Indistinguishability

e Pseudorandom Generators Imply P#£NP

Note 1. If a distinguisher cannot tell the difference between two distributions, then they
are indistinguishable. This concept can be formalized as the following definition.

2 Computational Indistinguishability

Definition 1 (Computational Indistinguishability). Let X = {X,,}nen and Y = {Y}, }nen
be ensembles such that, ¥n € N, X,, and Y,, are distributions on {0, 1}“") for polynomial £.
With that in mind, X and ) are computationally indistinguishable if and only if, V NUPPT
(Non-Uniform Probabilistic Polynomial-Time) distinguishers D, there 3 a negligible ¢ such
that, Yn € N

|Pr[D(1",t) =1:t <+ X,,| — Pr[D(1",t) = 1:t < Y, ]| < e(n)
To start explaining the equation, here’s the following clarification,
e ¢ represents a random sample from the distribution (e.g., X,, or Y;), and

e D(1™t) = 1 represents the event that the distinguisher D, given ¢ and a unary
encoding of the security parameter n, outputs 1. An output of 1 does not indicate
anything in particular.

With all that said, the equation essentially states that the absolute difference of the proba-
bilities of the distinguisher figuring out that a sample is from one distribution and another
distribution is less than negligible € or simply negligible. This means, for all distinguishers,
that they cannot tell which distribution a sample is from at all.

Note 2. The notation for computation indistinguishability between two ensembles is the
following: X ~. ).

Note 3. The definition for computational indistinguishability requires that for some ng and
every n > nq, the two distributions X, and Y, pass all efficient statistical tests that might be
used to distinguish them. For example, a statistical test for distinguishing whether a sample
comes from the uniform distribution or some other distribution might include:
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o Checking that there are roughly as many 0 as 1 in the sample.
o Checking that each sequence of bits occurs with roughly the same probability.

o Checking that given any prefix of a sample, some strategy for guessing the next bit
succeeds with probability roughly 1/2.1

Theorem 1 (Computational Indistinguishability is Closed Under NUPPT Post-process-
ing). If {X,}nen =c {Yn}nen, then Y NUPPT machines M, {M(Xy) }nen ~c {M(Yn) }nen-

Proof. Suppose towards contradiction that there 3 NUPPT D, polynomial p such that p(n)
is positive as n — oo and

1
|Pr(D(1",t) =1:t+ M(X,)]— Pr[D(1™",t) =1:t+ M(Y,)]| > o)

p(n
for infinitely many n € N.2 With that said, let R be a reduction such that R(17,u) =
D(1™, M(u)). Consider the advantage of R in distinguishing X’ from Y. For infinitely many
n €N,

|PrR(1",u) =1:u <+ X,| — Pr[R(1",u) =1:u + Y,
= |PriD(1",M(u)) =1:u <+ X,] — Pr[D(1",M(u)) =1 : u + Y;]| by the def. of R

= |PriD(1",t) =1:t+ M(X,)] — Pr[D(1",t) =1:t + M(Y,)]| by rearrangement
1
> — by our supposition
p(n)

This contradicts the computational indistinguishability of X and ). Therefore, no such D
with a non-negligible distinguishing advantage can exist, and the theorem follows. L]

Theorem 2 (Computational Indistinguishability is Transitive). Let {X Z‘}ie[m] be a sequence
of distributions for some constant m. If 3 any distinguisher D3 and any non-negative
constant € such that

|PriD(z) =1:2+ X' —Pr[D(z)=1:2+ X™]|>¢ (1)

then 3 i € [m — 1] such that

IPr[D(z) =1:2 « X'| — PriD(z) = 1: 2 « X"*1]| > ﬁ

'If this holds for all prefixes, and all strategies, it is known as the Next-Bit Test. The next-bit test is
complete for all statistical tests | , Theorem 75.4].

2M(X,) and M(Y;) represent distributions induced by applying M to samples from distributions X,
and Y, respectively. Meanwhile, since p(n) is a polynomial, ﬁ is a non-negligible quantity. This statement
communicates that D outputs 1 with non-negligibly greater or lesser probability when given samples from
M(X,) than when given samples from the M (Y},), or in other words it violates computational indistin-
guishability, or simply it distinguishes.

3Not necessarily bounded.
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Proof. Let p; = Pr[D(z) = 1: x < X;], and suppose toward contradiction that Vi € [m—1]
we have |p; — piy1| < It follows that

m—1"°

m—1

> (lpi — pisal) < (m —1)-

=1

€

=e.
m—1

The summation on the left hand side can be expanded in the following way:
Ipr = p2| + [p2 = P3| + - + [Pm—1 — Pmi]

>pr—p2+p2—p3+-+DPm-1— Pml by the triangle inequality [ ]
= ‘pl - pm‘

which then implies that

’pl _pm’ <e

in contradiction to Equation 1. Therefore, if |py — py| > €, then Ji € [m — 1] such that
Ipi — pit1] > 55 O

Note 4 (On the Uses of Theorem 2). To help you understand why this theorem is useful,
consider the sequence of ensembles {X'};cim such that Vi € [m], X' = {X] }nen. If there
exists some NUPPD distinguisher D and some polynomial p such that p(n) is positive as
n — oo and for infinitely many n € N

\Pr(D(z) =1: 2+ X} - Pr[D(z) = 1: 2+ X]| > p(ln)

then by Theorem 2, for infinitely many n € N there exists some i, € [m — 1] such that

T r)=1:x in] _ pPp x)=1:x intl ;
[PriD(e) =1:z ¢ Xp] = Pr{D(z) = 1:2 & X ™| 2 oo

Since 1/p(n) is non-negligible and m is constant, 1/((m — 1) - p(n)) is also non-negligible,
and therefore if D can distinguish X' from X™ then there exists some i € [m — 1] such that
D can distinguish X* from X1,

Corollary 1. If X =. Y and Y =, Z, then X ~. Z.

In other words, if no efficient distinguisher or algorithm can tell the difference between
X and Y or Y and Z, then none can tell the difference between X and Z.

Theorem 3 (Prediction Lemma). Let £ be a polynomial and let X° = {X%},cn for b =

{0,1} be defined such that X% is a distribution on {0,1}*™). X0 ~, X' if and only if ¥
NUPPT prediction algorithms A, 3 some negligible function € such that ¥Yn € N,

PrI(AQ", 1) = b: b (0,1}, ¢ X~ 2| < =(n) 2)
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Proof. We can see that the if direction of the theorem holds by contraposition: if there exists
some A satisfying Equation 2, then it trivially distinguishes X° from X''. The remainder of
the proof deals with the only if direction by contraposition; i.e. we will show that if there
exists any NUPPT D that distinguishes X° from X! with non-negligible advantage, then
there exists some A violating Equation 2.

Suppose without loss of generality* that 3 a NUPPT distinguisher D and a non-negligible
function g such that

|Pr[D(1%,t) : t < X,] = Pr[D(1",t) : t + X]| > p(n) (3)
and consider what happens if we use D to predict whether a sample came from X% or X!
Pr[D(1™,t) =b: b+ {0,1},t « X?]
= %(Pr[D(l”,t) =1:t+ X} )4+ Pr[DA™t) #1:t+ X))

1 1
5 o (PriDA" 1) st X — PrDA™t) : t + X))
1
> B + M(Qn) by plugging in Eqn. 3
Note that the prediction advantage @ is non-negligible, since u(n) is. L]

Note 5 (On the Meaning of Theorem 3). One way to read this theorem is that there is an
algorithm to tell with non-negligible advantage which of two distributions a sample came from
if and only if there is an algorithm that distinguishes the distributions with non-negligible
advantage, or: good distinguishers imply good predictors and vice versa.

3 Pseudo-random Generator

Definition 2 (Pseudorandom Generator (PRG)). Let U, be the uniform distribution on
{0,1}™ and let £ be a polynomial. The function G : {0,1}* — {0,1}(") is a PRG if:

e ((n)>n?’
o (G is deterministic and runs in polynomial time

i {G($) A Un}nEN e {Ué(n)}nEN

4If instead there exists D’ such that
|Pr[D'(1",t) : t + Xp] — Pr[D'(1",t) : t + X,]| > p(n)
then we can construct D from D’ by inverting the output.

5@ expands its input to be larger than n
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Theorem 4. If there 3 a PRG, then P # NP.

Proof. Given a PRG G : {0,1}" — {0,1}¥") let language L = image(G) = {G(z) : z €
{0,1}*}, Vy € L, 3 a witness x such that G(z) = y. G efficiently verifies membership
in L given a witness, and thus L € NP. Suppose towards contradiction that L € P. By
the definition of polynomial-time-recognizable languages, 3 a polynomial-time algorithm A
such that A(y) =1 <= y € L. It follows Vn € N that

PriA(G(z)) =1:2z+ {0,1}"] =1

and

PriA(y) =1:y < ({0, "\ {G(x) : 2 € {0,1}"})] = 0
which contradicts the PRG security of G. Therefore, L ¢ P and P # NP. L]
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