# Lecture 4: Properties of Computational Indistinguishability

Lecturer: Jack Doerner Scribe: Sabrina Lopez

# 1 Topics Covered

- Useful Lemmas about Computational Indistinguishability
- Pseudorandom Generators Imply P≠NP

Note 1. If a distinguisher cannot tell the difference between two distributions, then they are indistinguishable. This concept can be formalized as the following definition.

### 2 Computational Indistinguishability

**Definition 1** (Computational Indistinguishability). Let  $\mathcal{X} = \{X_n\}_{n \in \mathbb{N}}$  and  $\mathcal{Y} = \{Y_n\}_{n \in \mathbb{N}}$  be ensembles such that,  $\forall n \in \mathbb{N}$ ,  $X_n$  and  $Y_n$  are distributions on  $\{0,1\}^{\ell(n)}$  for polynomial  $\ell$ . With that in mind,  $\mathcal{X}$  and  $\mathcal{Y}$  are computationally indistinguishable if and only if,  $\forall NUPPT$  (Non-Uniform Probabilistic Polynomial-Time) distinguishers D, there  $\exists$  a negligible  $\varepsilon$  such that,  $\forall n \in \mathbb{N}$ 

$$|Pr[D(1^n, t) = 1 : t \leftarrow X_n] - Pr[D(1^n, t) = 1 : t \leftarrow Y_n]| < \varepsilon(n)$$

To start explaining the equation, here's the following clarification,

- t represents a random sample from the distribution (e.g.,  $X_n$  or  $Y_n$ ), and
- $D(1^n, t) = 1$  represents the event that the distinguisher D, given t and a unary encoding of the security parameter n, outputs 1. An output of 1 does not indicate anything in particular.

With all that said, the equation essentially states that the absolute difference of the probabilities of the distinguisher figuring out that a sample is from one distribution and another distribution is less than negligible  $\varepsilon$  or simply negligible. This means, for all distinguishers, that they cannot tell which distribution a sample is from at all.

**Note 2.** The notation for computation indistinguishability between two ensembles is the following:  $\mathcal{X} \approx_c \mathcal{Y}$ .

**Note 3.** The definition for computational indistinguishability requires that for some  $n_0$  and every  $n > n_0$ , the two distributions  $X_n$  and  $Y_n$  pass all efficient statistical tests that might be used to distinguish them. For example, a statistical test for distinguishing whether a sample comes from the uniform distribution or some other distribution might include:

- Checking that there are roughly as many 0 as 1 in the sample.
- Checking that each sequence of bits occurs with roughly the same probability.
- Checking that given any prefix of a sample, some strategy for guessing the next bit succeeds with probability roughly 1/2.<sup>1</sup>

**Theorem 1** (Computational Indistinguishability is Closed Under NUPPT Post-processing). If  $\{X_n\}_{n\in\mathbb{N}} \approx_c \{Y_n\}_{n\in\mathbb{N}}$ , then  $\forall$  NUPPT machines M,  $\{M(X_n)\}_{n\in\mathbb{N}} \approx_c \{M(Y_n)\}_{n\in\mathbb{N}}$ .

*Proof.* Suppose towards contradiction that there  $\exists$  NUPPT D, polynomial p such that p(n) is positive as  $n \to \infty$  and

$$|Pr[D(1^n, t) = 1 : t \leftarrow M(X_n)] - Pr[D(1^n, t) = 1 : t \leftarrow M(Y_n)]| \ge \frac{1}{p(n)}$$

for infinitely many  $n \in \mathbb{N}$ .<sup>2</sup> With that said, let R be a reduction such that  $R(1^n, u) = D(1^n, M(u))$ . Consider the advantage of R in distinguishing  $\mathcal{X}$  from  $\mathcal{Y}$ . For infinitely many  $n \in \mathbb{N}$ ,

$$|Pr[R(1^{n}, u) = 1 : u \leftarrow X_{n}] - Pr[R(1^{n}, u) = 1 : u \leftarrow Y_{n}]|$$

$$= |Pr[D(1^{n}, M(u)) = 1 : u \leftarrow X_{n}] - Pr[D(1^{n}, M(u)) = 1 : u \leftarrow Y_{n}]|$$
 by the def. of  $R$ 

$$= |Pr[D(1^{n}, t) = 1 : t \leftarrow M(X_{n})] - Pr[D(1^{n}, t) = 1 : t \leftarrow M(Y_{n})]|$$
 by rearrangement
$$\geq \frac{1}{p(n)}$$
 by our supposition

This contradicts the computational indistinguishability of  $\mathcal{X}$  and  $\mathcal{Y}$ . Therefore, no such D with a non-negligible distinguishing advantage can exist, and the theorem follows.

**Theorem 2** (Computational Indistinguishability is Transitive). Let  $\{X^i\}_{i\in[m]}$  be a sequence of distributions for some constant m. If  $\exists$  any distinguisher  $D^3$  and any non-negative constant  $\varepsilon$  such that

$$|Pr[D(x) = 1 : x \leftarrow X^{1}] - Pr[D(x) = 1 : x \leftarrow X^{m}]| \ge \varepsilon \tag{1}$$

then  $\exists i \in [m-1]$  such that

$$|Pr[D(x) = 1: x \leftarrow X^i] - Pr[D(x) = 1: x \leftarrow X^{i+1}]| \geq \frac{\varepsilon}{m-1}$$

 $<sup>^{1}</sup>$ If this holds for all prefixes, and all strategies, it is known as the *Next-Bit Test*. The next-bit test is complete for all statistical tests [Ps10, Theorem 75.4].

 $<sup>^2</sup>M(X_n)$  and  $M(Y_n)$  represent distributions induced by applying M to samples from distributions  $X_n$  and  $Y_n$  respectively. Meanwhile, since p(n) is a polynomial,  $\frac{1}{p(n)}$  is a non-negligible quantity. This statement communicates that D outputs 1 with non-negligibly greater or lesser probability when given samples from  $M(X_n)$  than when given samples from the  $M(Y_n)$ , or in other words it violates computational indistinguishability, or simply it distinguishes.

<sup>&</sup>lt;sup>3</sup>Not necessarily bounded.

*Proof.* Let  $p_i = Pr[D(x) = 1 : x \leftarrow X_i]$ , and suppose toward contradiction that  $\forall i \in [m-1]$  we have  $|p_i - p_{i+1}| < \frac{\varepsilon}{m-1}$ . It follows that

$$\sum_{i=1}^{m-1} (|p_i - p_{i+1}|) < (m-1) \cdot \frac{\varepsilon}{m-1} = \varepsilon.$$

The summation on the left hand side can be expanded in the following way:

$$|p_1 - p_2| + |p_2 - p_3| + \dots + |p_{m-1} - p_m|$$
  
 $\geq |p_1 - p_2 + p_2 - p_3 + \dots + p_{m-1} - p_m|$  by the triangle inequality [Wei25]  
 $= |p_1 - p_m|$ 

which then implies that

$$|p_1 - p_m| < \varepsilon$$

in contradiction to Equation 1. Therefore, if  $|p_1 - p_m| \ge \varepsilon$ , then  $\exists i \in [m-1]$  such that  $|p_i - p_{i+1}| \ge \frac{\varepsilon}{m-1}$ .

**Note 4** (On the Uses of Theorem 2). To help you understand why this theorem is useful, consider the sequence of ensembles  $\{\mathcal{X}^i\}_{i\in[m]}$  such that  $\forall i\in[m]$ ,  $\mathcal{X}^i=\{X_n^i\}_{n\in\mathbb{N}}$ . If there exists some NUPPD distinguisher D and some polynomial p such that p(n) is positive as  $n\to\infty$  and for infinitely many  $n\in\mathbb{N}$ 

$$|Pr[D(x) = 1 : x \leftarrow X_n^1] - Pr[D(x) = 1 : x \leftarrow X_n^m]| \ge \frac{1}{p(n)}$$

then by Theorem 2, for infinitely many  $n \in \mathbb{N}$  there exists some  $i_n \in [m-1]$  such that

$$|Pr[D(x) = 1 : x \leftarrow X_n^{i_n}] - Pr[D(x) = 1 : x \leftarrow X_n^{i_n+1}]| \ge \frac{1}{(m-1) \cdot p(n)}.$$

Since 1/p(n) is non-negligible and m is constant,  $1/((m-1) \cdot p(n))$  is also non-negligible, and therefore if D can distinguish  $\mathcal{X}^1$  from  $\mathcal{X}^m$  then there exists some  $i \in [m-1]$  such that D can distinguish  $\mathcal{X}^i$  from  $\mathcal{X}^{i+1}$ .

Corollary 1. If  $\mathcal{X} \approx_c \mathcal{Y}$  and  $\mathcal{Y} \approx_c \mathcal{Z}$ , then  $\mathcal{X} \approx_c \mathcal{Z}$ .

In other words, if no efficient distinguisher or algorithm can tell the difference between  $\mathcal{X}$  and  $\mathcal{Y}$  or  $\mathcal{Y}$  and  $\mathcal{Z}$ , then none can tell the difference between  $\mathcal{X}$  and  $\mathcal{Z}$ .

**Theorem 3** (Prediction Lemma). Let  $\ell$  be a polynomial and let  $\mathcal{X}^b = \{X_n^b\}_{n \in \mathbb{N}}$  for  $b = \{0,1\}$  be defined such that  $X_n^b$  is a distribution on  $\{0,1\}^{\ell(n)}$ .  $\mathcal{X}^0 \approx_c \mathcal{X}^1$  if and only if  $\forall$  NUPPT prediction algorithms A,  $\exists$  some negligible function  $\varepsilon$  such that  $\forall n \in \mathbb{N}$ ,

$$\left| Pr[(A(1^n, t) = b : b \leftarrow \{0, 1\}, t \leftarrow X_n^b] - \frac{1}{2} \right| < \varepsilon(n)$$
 (2)

*Proof.* We can see that the *if* direction of the theorem holds by contraposition: if there exists some A satisfying Equation 2, then it trivially distinguishes  $\mathcal{X}^0$  from  $\mathcal{X}^1$ . The remainder of the proof deals with the *only if* direction by contraposition; i.e. we will show that if there exists any NUPPT D that distinguishes  $\mathcal{X}^0$  from  $\mathcal{X}^1$  with non-negligible advantage, then there exists some A violating Equation 2.

Suppose without loss of generality<sup>4</sup> that  $\exists$  a NUPPT distinguisher D and a non-negligible function  $\mu$  such that

$$|Pr[D(1^n, t) : t \leftarrow X_n^1] - Pr[D(1^n, t) : t \leftarrow X_n^0]| > \mu(n)$$
(3)

and consider what happens if we use D to predict whether a sample came from  $\mathcal{X}^0$  or  $\mathcal{X}^1$ :

$$\begin{split} & Pr[D(1^n,t) = b : b \leftarrow \{0,1\}, t \leftarrow X_n^b] \\ & = \frac{1}{2}(Pr[D(1^n,t) = 1 : t \leftarrow X_n^1] + Pr[D(1^n,t) \neq 1 : t \leftarrow X_n^0]) \\ & = \frac{1}{2}(Pr[D(1^n,t) = 1 : t \leftarrow X_n^1] + 1 - Pr[D(1^n,t) = 1 : t \leftarrow X_n^0]) \\ & \frac{1}{2} + \frac{1}{2}(Pr[D(1^n,t) : t \leftarrow X_n^1] - Pr[D(1^n,t) : t \leftarrow X_n^0]) \\ & > \frac{1}{2} + \frac{\mu(n)}{2} \end{split} \qquad \qquad \text{by plugging in Eqn. 3}$$

Note that the prediction advantage  $\frac{\mu(n)}{2}$  is non-negligible, since  $\mu(n)$  is.

Note 5 (On the Meaning of Theorem 3). One way to read this theorem is that there is an algorithm to tell with non-negligible advantage which of two distributions a sample came from if and only if there is an algorithm that distinguishes the distributions with non-negligible advantage, or: good distinguishers imply good predictors and vice versa.

#### 3 Pseudo-random Generator

**Definition 2** (Pseudorandom Generator (PRG)). Let  $U_n$  be the uniform distribution on  $\{0,1\}^n$  and let  $\ell$  be a polynomial. The function  $G:\{0,1\}^n \to \{0,1\}^{\ell(n)}$  is a PRG if:

- $\ell(n) > n^{5}$
- G is deterministic and runs in polynomial time
- $\{G(x): x \leftarrow U_n\}_{n \in \mathbb{N}} \approx_c \{U_{\ell(n)}\}_{n \in \mathbb{N}}$

$$|Pr[D'(1^n, t): t \leftarrow X_n^0] - Pr[D'(1^n, t): t \leftarrow X_n^1]| > \mu(n)$$

then we can construct D from D' by inverting the output.

<sup>&</sup>lt;sup>4</sup>If instead there exists D' such that

 $<sup>{}^{5}</sup>G$  expands its input to be larger than n

**Theorem 4.** If there  $\exists$  a PRG, then  $P \neq NP$ .

*Proof.* Given a PRG  $G: \{0,1\}^n \to \{0,1\}^{\ell(n)}$ , let language  $L = \operatorname{image}(G) = \{G(x): x \in \{0,1\}^*\}$ ,  $\forall \ y \in L$ ,  $\exists$  a witness x such that G(x) = y. G efficiently verifies membership in L given a witness, and thus  $L \in \mathsf{NP}$ . Suppose towards contradiction that  $L \in \mathsf{P}$ . By the definition of polynomial-time-recognizable languages,  $\exists$  a polynomial-time algorithm A such that  $A(y) = 1 \iff y \in L$ . It follows  $\forall n \in \mathbb{N}$  that

$$Pr[A(G(x)) = 1 : x \leftarrow \{0, 1\}^n] = 1$$

and

$$Pr[A(y) = 1 : y \leftarrow (\{0, 1\}^{\ell(n)} \setminus \{G(x) : x \in \{0, 1\}^n\})] = 0$$

which contradicts the PRG security of G. Therefore,  $L \notin P$  and  $P \neq NP$ .

# References

- [Ps10] Rafael Pass and abhi shelat. A course in cryptography. https://www.cs.cornell.edu/courses/cs4830/2010fa/lecnotes.pdf, 2010.
- [Wei25] Eric W. Weisstein. Triangle inequality. https://mathworld.wolfram.com/ TriangleInequality.html, 2025.