
CS 6222 Grad Crypto September 2, 2025

Lecture 3: Efficiency and Computational Indistinguishability

Lecturer: Jack Doerner Scribe: Christopher Asuncion

1 Topics Covered

• Efficient Computation

• Computational Indistinguishability

• Applications of Computational Indistinguishability

In a previous lecture, we introduced the one-time pad encryption scheme:

Definition 1 (One Time Pad (OTP) for n-Bit Messsages) Let K =M = C = {0, 1}n.
The One-Time Pad encryption scheme is defined as follows:

Gen : 1n 7→ k : k ← {0, 1}n

Enc : k,m 7→ m⊕ k

Dec : k, c 7→ c⊕ k

We also proved Shannon’s theorem, which tells us that in order to achieve perfect
secrecy, an encryption scheme must have K ≥ M, and therefore one-time pad is optimal
for this notion. We also observed that the definition of perfect secrecy places no restrictions
whatsoever upon the power of the adversary. In today’s lecture, we will investigate how
the definition of security for encryption can be weakened in order to permit shorter keys,
by restricting what kind of adversaries we consider, while still capturing all adversaries
that we believe exist in the real world. Toward this end, imagine that we had function
G : {0, 1}n → {0, 1}ℓ(n) for some polynomial ℓ.1 such that if G is provided a truly random n-
bit string as input, then its output “looks random” to any real-world adversary. Intuitively,
we could use such a function to encrypt ℓ(n)-bit messages using n-bit keys:

Enc′ : k,m 7→ m⊕G(k)

Dec′ : k, c 7→ c⊕G(k)

In order to maintain correctness, G must be deterministic. This implies that the image
of G is much smaller than the set of all ℓ(n)-bit random strings, and therefore an unbounded
adversary can distinguish a random ℓ(n)-bit string from a random output of G with non-
negligible advantage just by checking whether the ℓ(n)-bit string in question is in the image
of G or not. This kind of attack might require enumerating all possible outputs of G,

1In order for G to be useful, we will need ℓ(n) > n.

Lecture 3, Page 1

https://jackdoerner.net/teaching/2025/Fall/CS6222

which isn’t very realistic, since there are exponentially many of them. We wish to develop a
quantification for adversaries that rules out this kind of exponential-time brute-force attack,
while still capturing any kind of efficient statistical test that a realistic adversary would be
able to perform.

It’s worth noting that even if an adversary cannot perform the aforementioned exponential-
time attack, it can still guess a few preimages of G, and if it gets lucky, one of them might
correspond to the string it wishes to distinguish. This kind of lucky-guessing attack is
acceptable if we can tune the parameters so that the chance of any realistic adversary
succeeding is very small.

Thus, in this lecture, we will answer the following questions:

1. How do we define “efficient” computation and “efficient” adversaries, in contrast to
inefficient ones that can perform exponential-time attacks?

2. What does it mean for a string to “look” random to an adversary, without being
random?

3. What constitutes a sufficiently “small” probability of adversarial success?

2 Efficient Computation

Definition 2 (Runtime and Probabilistic Polynomial Time) A (possibly randomized)
Turing Machine A runs in time T (n) if ∀x ∈ {0, 1}∗ and for every random tape, A(x) halts
for T (|x|) steps at most. If T is a polynomial (that is, ∃c, n0 such that ∀n ≥ n0, T (n) ≤ nc)
we say that A is Probabilistic Polynomial Time (PPT), or simply Polynomial Time if A is
deterministic.

Definition 3 (Efficient Computation) An algorithm is said informally to be efficient if
it runs in probabilistic polynomial time.

The choice to identify polynomial time with efficiency or real-world feasibility is ultimately
an arbitrary one, but we find it to be useful because:

1. Polynomial time is closed under composition.

2. Polynomial time is insensitive to representations of the algorithm. This means that
no matter how we represent the algorithm, whether it be with Turing Machines, C
programs, circuits, or some other means, the conversion between the representations
only affects the runtime by a polynomial factor. This is a corollary of the Extended
Church-Turing Thesis2 [BV97, Coo22].

3. Based on our human experiences, algorithms that are not computable in polynomial
time quickly become infeasible to compute as their input size grows. To compute
polynomial-time algorithms on large inputs, it is usually possible to buy sufficient
computing resources (or at least conceivable to build sufficient computing resources,
someday), whereas this is not true for super-polynomial-time algorithms.

2Also known as the Complexity-Theoretic Church-Turing Thesis, or the Feasibility Thesis.

Lecture 3, Page 2

3 Computational Indistinguishability

Definition 4 (Non-Uniform Probabilistic Polynomial Time) A non-uniform proba-
bilistic polynomial time (NUPPT) algorithm A is an infinite sequence of randomized Turing
Machines A = {A1, A2, . . . } such that ∀n ∈ N, each machine An has a run time upper-
bounded by some constant Tn, and there exists a polynomial p such that |An| ≤ p(n) and
Tn ≤ p(n). That is, both the description length and the runtime of An are bounded by p.
For a NUPPT A, we often write A(x) to mean A|x|(x).

Note 1 (Advice) NUPPT machines compute the complexity class P/poly, and are equiv-
alent to families of polynomial-sized circuits, and to uniform turing machines that receive
polynomially-bounded advice [Aut25]. In the context of adversarial machines, this advice
can be thought of as encoding any a-priori information3 that the adversary might use to its
advantage in the game that it plays; for example, the factorizations of some large biprimes.

Definition 5 (Negligible Function) A function ε : N −→ R+∪{0} is negligible if ∀c ∃n0

such that ∀n ≥ n0, ε(n) <
1
nc . That is, negligible functions diminish faster than any inverse

polynomial.

Examples: 2−n, n1002−n, 2−
√
n

The choice to use negligible functions to bound adversarial success probability is ultimately
arbitrary, and as above, we make this choice because we find it useful:

1. Negligible functions are closed under addition and under multiplication by polynomi-
als. So, for example, negl1(n)+ negl2(n) is negligible, and if p is any polynomial, then
p(n) · negl(n) is negligible.

2. Combining polynomial limits on the adversarial runtime with negligible bounds on
adversarial advantage yields schemes that become more secure even as computation
power grows. Consider the following example:4

Suppose that running some some encryption scheme honestly requires n2

computing power. At any given moment in history, we set n so that honest
users take a consistent amount of time to run (so, as computing power
increases over time, we increase n to match). Now suppose that the amount
of computing power available to an adversary grows quadratically with the
amount of power available to honest users; not only do adversaries have
more power, their power grows faster over time. Specifically, honest users
can do n2 computation and adversaries n4 at any given moment. If the
failure rate of our system is bounded by the negligible function 2−n, then
our encryption scheme actually becomes more secure as computing power
increases, even though the adversaries’ power is growing faster than the
honest users’ power.

3That is, information that is independent of the random coins sampled in the course of the game.
4This example is borrowed from [KL20].

Lecture 3, Page 3

Now consider our algorithm G again. Let Un be the uniform distribution over the set
of all n-bit strings. We wish to define what it means for G(Un) to “look like” Uℓ(n), and
more generally what it means for any distribution to “look like” another distribution. The
tools we have defined above allow us to bound adversarial power and success probability
asymptotically. Therefore we can only reason about sequences of these distributions.

Definition 6 (Ensemble of Distributions) An ensemble of distributions is a sequence
X = {X1, X2, . . . } such that ∀n ∈ N, Xn is a distribution on {0, 1}∗.

Definition 7 (Computational Indistinguishability) Let X = {X1, X2, . . . } and Y =
{Y1, Y2, . . . } be ensembles such that ∀n ∈ N, Xn and Yn are distributions on {0, 1}ℓ(n) for
some polynomial ℓ. X and Y are computationally indistinguishable if and only if ∀ NUPPT
distinguishers D, ∃ a negligible function ε such that ∀n ∈ N:

|Pr[D(1n, t) = 1 : t←− Xn]− Pr[D(1n, t) = 1 : t←− Yn]| < ε(n)

We use the notation X ≈c Y to indicate that the above condition holds.

4 Applications of Computational Indistinguishability

Finally, we can formally describe G and the distribution that it produces.

Definition 8 (Pseudorandomness) X is pseudorandom if and only if X ≈c {Uℓ(n)}n∈N,
where ℓ is some polynomial and Uℓ(n) is the uniform distribution on {0, 1}ℓ(n).

Definition 9 (Pseudorandom Generator) A polynomial-time algorithm G : {0, 1}n −→
{0, 1}ℓ(n) for some polynomial ℓ is a pseudorandom generator (PRG) if and only if all of
the following conditions hold:

1. G is deterministic

2. ℓ(n) > n

3. {G(x) : x← Un}n∈N is pseudorandom.

Shannon’s theorem tells us that (Gen,Enc′,Dec′) cannot possibly be perfectly secure,
but we can define a basic computational security notion that it does satisfy, if G is a PRG.5

Definition 10 (EAV1-Security) A symmetric-key encryption scheme (Gen,Enc,Dec) with
message space M is computationally secure against one-ciphertext eavesdropping (EAV1-
Secure) if (Gen,Enc,Dec) are all polynomial-time algorithms and ∀m0,m1 ∈M:

{Enck(m0) : k ← Gen(1n)}n∈N ≈c {Enck(m1) : k ← Gen(1n)}n∈N
5Proof of this fact is left as an exercise.

Lecture 3, Page 4

References

[Aut25] Various Authors. P/poly. https://complexityzoo.net/Complexity_Zoo:P#

ppoly, 2025.

[BV97] Ethan Bernstein and Umesh Vazirani. Quantum complexity theory. SIAM Journal
on Computing, 26(5):1411–1473, 1997.

[Coo22] Stephen Cook. The p vs np problem. https://www.claymath.org/wp-content/
uploads/2022/06/pvsnp.pdf, 2022.

[KL20] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography (3rd
ed.). 2020.

Lecture 3, Page 5

https://complexityzoo.net/Complexity_Zoo:P#ppoly
https://complexityzoo.net/Complexity_Zoo:P#ppoly
https://www.claymath.org/wp-content/uploads/2022/06/pvsnp.pdf
https://www.claymath.org/wp-content/uploads/2022/06/pvsnp.pdf

	Topics Covered
	Efficient Computation
	Computational Indistinguishability
	Applications of Computational Indistinguishability

