
CS 6222 Grad Crypto August 28, 2025

Lecture 2: Shannon’s Secretive Studies

Lecturer: Jack Doerner Scribe: John Berberian, Jr.

1 Topics Covered

• Claude Shannon

• Definitions of Secrecy (& Their Equivalence)

• One-Time Pad

2 Claude Shannon

Claude Shannon was a fascinating fellow. A brief history of his many contributions to
the field of computer science is shown in Figure 1. Today we will be discussing information
theory; specifically, the concept of secrecy. Details of his life ranging from his rocket-powered
frisbee to his adventures with juggling will be deferred to another lecture.

1937

Proved equivalence of
digital circuits and

boolean algebra [Sha38].

1948

Invented
information

theory.

1960s/70s?

Allegedly invented
the tandem unicycle!1

[Hor23]

In this lecture! Not in this lecture :(

Figure 1: A cursory timeline of Shannon’s most significant achievements.

3 Secrecy in Three Flavors

We will start off by revisiting the situation we discussed last class (Figure 2). Alice and Bob
are trying to communicate without Eve listening in. To that end, they have established
some secret key k ahead of time, by some means upon which Eve could not eavesdrop.
Alice is using k and some encryption algorithm Enc to encrypt a secret message m into the
ciphertext c (c = Enck(m)). Bob, upon receiving the ciphertext, will use a corresponding
decryption algorithm Dec and k to recover the message m (m = Deck(c)).

1Extra credit opportunity: give your final project presentation while riding Shannon’s tandem unicycle.
For an additional challenge, juggle while you ride and present.

Lecture 2, Page 1

https://jackdoerner.net/teaching/2025/Fall/CS6222

Alice
c = Enck(m)

c Bob
m = Deck(c)

Eve

k

Figure 2: Communication Diagram

Last class, we were trying to informally define what it might mean for their communi-
cation to be secure. We walked through a few definitions, but none of them was quite right.
This time, we’re going to use a more formal approach to define exactly what we mean by
secure communication. But first we need to introduce the syntax we’ll be using.

Definition -1 (Symmetric-Key Encryption Syntax) Let K, M, and C be spaces of
keys, messages, and ciphertexts, respectively. A Symmetric-Key Encryption Scheme (SKE)2

is a tuple of algorithms (Gen,Enc,Dec) such that:

Gen: Randomly samples a key from the universe K. Written as k ← Gen

Enc: Operates on k ∈ K,m ∈M, outputs c ∈ C. Written as c← Enck(m)

Dec: Operates on k ∈ K, c ∈ C, outputs m ∈M. Written as m := Deck(c)

Note 1 (Notation for Sampling and Assignment) The arrow ← denotes random as-
signment from something; the something depends on context. It might be a randomized
algorithm,3 it might be a set, it might be a distribution. If it is a set, then sampling is
performed from the uniform distribution over that set. The colon-equals := denotes deter-
ministic assignment, in which there is no randomness whatsoever.

In order to have a useful encryption-decryption scheme, we need the decryption opera-
tion to be the opposite of encryption. For today, we will require the strongest possible
version of this: for all possible keys, the decryption algorithm should always (that is,
deterministically—not just with some probability) perfectly recover any message that could
be encrypted. Put more formally:

Definition 0 (Perfect Correctness) A symmetric-key encryption scheme (Gen,Enc,Dec)
is perfectly correct iff

∀m ∈M, Pr[Deck(Enck(m)) = m : k ← Gen] = 1

2Also known as a Private-Key or Secret-Key Encryption Scheme.
3Be aware, an implicit translation applies for algorithms: one may write the randomness of the random

assignment (←) as an explicit parameter in a deterministic assignment (:=). By convention, any randomness
parameters are separated from other parameters by a semicolon, rather than the comma usually used for
parameters. So c ← Enck(m) translates to c := Enck(m; r), where r is a random value. Unless otherwise
specified, r is sampled from the uniform distribution over appropriately-long sequences of bits.

Lecture 2, Page 2

Note 2 (Notation for Probability) The equation in Definition 0 measures the proba-
bility that the event (or predicate) given on the left-hand side of the colon occurs in the
experiment (or setup) given on the right-hand side, over the random coins of all algorithms
involved. Some authors (including Pass and shelat [Ps10]) write the event on the right and
the experiment on the left.

So we are able to recover the message that we put in—excellent! But we’re greedy; we
want more. We would also like the encryption scheme to keep the contents of the message
secret. In short, seeing the ciphertext c should not give an attacker any more information
about the message contents than they already had. If we wanted to describe this concept
more formally, we might say that the probability distribution of messages D is identical
before and after conditioning on the ciphertext, for all possible ciphertexts.

Definition 1 (Shannon Secrecy) A symmetric-key encryption scheme (Gen,Enc,Dec) is
Shannon-secret iff, for all message distributions D on M, all messages m∗ ∈ M, and all
ciphertexts ∀c ∈ C such that Pr[c = Enck(m) : k ← Gen,m← D] > 0, we have

Pr[m∗ = m|c = Enck(m) : m← D, k ← Gen] = Pr[m∗ = m : m← D]

To gain some intuition about this, we might imagine that Eve is wondering if the message
m is some specific message m∗. Before seeing the ciphertext, she calculates some probability
Pr[m∗ = m : m ← D] based on D, which is some expected distribution of messages. Then
she sees some ciphertext derived from m and k (it must be a valid ciphertext—that’s what
the Pr[...] > 0 condition is saying). If the cipher is Shannon-secret, seeing this ciphertext
must not result in a change in how likely she thinks m = m∗ is—and this must be true
for all possible combinations of keys, messages m and m∗, and ciphertexts that could be
derived from m and k. This is a pretty strong secrecy condition: it means that Eve isn’t
gaining any information at all about what the message is when she sees the ciphertext.

We’ll also discuss another sort of secrecy. Another way to make sure that we don’t
reveal anything about the message is to have each possible ciphertext be equally probable
for each possible message, over the random choice of the key.

Definition 2 (Perfect Secrecy) A symmetric-key encryption scheme (Gen,Enc,Dec) is
perfectly secret iff

∀m1,m2 ∈M,∀c ∈ C,
Pr[Enck(m1) = c : k ← Gen] = Pr[Enck(m2) = c : k ← Gen]

This one is much easier to interpret. For any pair of messages, all ciphertexts must be
equally likely for each of the two.4 It turns out that this definition is exactly equivalent to
the last one. We will prove one direction of that implication; the other direction is left as
an exercise to the reader. It may also be found on pg. 13 of Pass and shelat [Ps10].

4Note that two distinct messages can only yield the same specific ciphertext under different keys if the
scheme is perfectly correct. Here we are arguing only about distributions.

Lecture 2, Page 3

Theorem 1 Definition 2 implies Definition 1.

Proof: For some perfectly secret encryption scheme (Gen,Enc,Dec), we begin with the
left-hand side of Definition 1.

Pr[m∗ = m|c = Enck(m) : k ← Gen,m← D]

This conditional probability can be rewritten as a quotient.5

Pr[m∗ = m ∧ c = Enck(m) : k ← Gen,m← D]

Pr[c = Enck(m) : k ← Gen,m← D]

If the event described in the numerator occurs, m = m∗. This means it is equivalent to
express the second condition in that expression in terms of m∗.

Pr[m∗ = m ∧ c = Enck(m
∗) : k ← Gen,m← D]

Pr[c = Enck(m) : k ← Gen,m← D]

We recognize that the two intersected events in the numerator are entirely independent of
one another. Moreover the first does not depend on k and the second does not depend on
m. Therefore we can express the intersection as a product.

Pr[m∗ = m : m← D] Pr[c = Enck(m
∗) : k ← Gen]

Pr[c = Enck(m) : k ← Gen,m← D]

The denominator is the probability that the fixed ciphertext c results from sampling a key
according to Gen and a message according to D. We can rewrite that as the sum over all
possible messages m′ of the probability that the message m′ is sampled from D, and the
probability that m′ yields the ciphertext c.

Pr[m∗ = m : m← D] Pr[c = Enck(m
∗) : k ← Gen]∑

m′∈M Pr[m′ = m ∧ c = Enck(m′) : k ← Gen,m← D]

We can apply independence again to separate the denominator.

Pr[m∗ = m : m← D] Pr[c = Enck(m
∗) : k ← Gen]∑

m′∈M Pr[m′ = m : m← D] Pr[c = Enck(m′) : k ← Gen]

At this point, we may apply the perfect secrecy property we assumed at the beginning of
this proof. By Definition 2, Pr[c = Enck(m

′) : k ← Gen] = Pr[c = Enck(m
∗) : k ← Gen] for

all m′,m∗. We substitute that in the denominator.

Pr[m∗ = m : m← D] Pr[c = Enck(m
∗) : k ← Gen]∑

m′∈M Pr[m′ = m : m← D] Pr[c = Enck(m∗) : k ← Gen]

Since Pr[c = Enck(m
∗) : k ← Gen] is constant with respect to m′, we can factor it out of

the sum and cancel it with the matching term in the numerator.

Pr[m∗ = m : m← D]∑
m′∈M Pr[m′ = m : m← D]

The denominator is equivalent to integrating D overM, so it must be 1.

5The expressions in this proof are all equal, but I don’t have sufficient line width to write two of them
side-by-side with an equals sign in the middle. I hope you can make up in imagination what I lack in space.

Lecture 2, Page 4

The definitions haven’t yet explicitly mentioned Eve. So let’s play a little game with
Eve. This is much closer to how we’ll be making definitions for the rest of the class. Let us
imagine that Eve has given us two messages, m1 and m2. We select one of them at random,
encrypt it, and send it. Then Eve will try to guess which one we sent.6 We would like
it to be impossible for Eve to distinguish which message we sent—that is, her chance of
guessing which of her two messages we chose should be no better than guessing randomly.
This property is called perfect indistinguishability.

Definition 3 (Perfect Indistinguishability) A symmetric-key encryption scheme (Gen,
Enc,Dec) is perfectly indistinguishable iff for all two-part unbounded algorithms (A1,A2),

Pr

[
b′ = b : (m0,m1, s)← A1, b← {0, 1},

k ← Gen, c← Enck(mb), b
′ ← A2(c, s)

]
=

1

2

If the above definition is bit tough to read, then it may be easier to start by reading
the experiment (i.e. start reading at the colon) and come back to the event later. In the
experiment, we begin by getting a pair of messages (m0,m1) from Eve, whose choices we
represent with the algorithm A1. The algorithm also gives us some opaque state s. Later
on, when she sees the ciphertext, we’ll describe her choices with A2. The s parameter exists
to allow her to remember something between those two interactions—essentially, this is
allowing those two algorithms to communicate. We flip a coin (b) to select our message, and
encrypt it with a key that we generate. Then Eve looks at the ciphertext (and remembers
anything she put in s) and makes a guess b′ about which message we chose. The process
she follows to arrive at that guess is described by A2. If the encryption scheme is perfectly
indistinguishable, Eve’s guess about which message we chose should be exactly as good
as a random guess (1/2 chance of being correct), no matter what algorithm she uses to
determine it. In other words: Eve can never do any better7 than random guessing when
playing this game.

This is a pretty strong statement—and note that it doesn’t leave room for any partic-
ularly weak messages! Eve gets to stack the deck here, so to speak. If there were certain
messages that were easier to tell apart than others, Eve could choose those and do better
than a random guess. In order to satisfy perfect indistinguishability, Eve cannot gain any
useful information about the message by looking at the ciphertext. It turns out this is
exactly equivalent to perfect secrecy and (by consequence) Shannon secrecy.

4 One-Time Pad

We now come to a fascinatingly-constructed cipher: the one-time pad (OTP). It predated
Shannon by a good bit,8 but he was the first to prove its security. Let’s walk through how
it works.

6Presumably, the messages will be padded to be the same length. Otherwise figuring out which one we’ve
sent would be pretty easy.

7Nor, by consequence of the binary choice, any worse!
8Wikipedia claims it originated around 1882. Take that with your preferred wikipedian salt dosage.

Lecture 2, Page 5

Definition 4 (One-Time Pad for n-bit Messages) Let K =M = C = {0, 1}n. Then,
the tuple (Gen,Enc,Dec) is defined as:

Gen : k ← {0, 1}n

Enc : k,m 7→ k ⊕m

Dec : k, c 7→ k ⊕ c

In this definition, ⊕ denotes bitwise XOR. We can verify the correctness of this scheme:

Deck(Enck(m)) = k ⊕ (k ⊕m)

= (k ⊕ k)⊕m by associativity

= 0⊕m

= m

It happens that this scheme is also perfectly secret. We could use any of the three definitions
we gave for secrecy to prove this (they are, after all, equivalent), but the second one is the
most straightforward to use.

Theorem 2 OTP is perfectly secret

Proof: We begin with one side of Definition 2. For any pair of m ∈M, c ∈ C,

Pr[Enck(m) = c : k ← Gen] = Pr[k ⊕m = c : k ← {0, 1}n]
= Pr[k = c⊕m : k ← {0, 1}n]
= 2−n

The last step deserves some justification. We haven’t put any conditions on m and c here, so
m⊕c is just some fixed value in the space {0, 1}n. The key k is uniformly sampled from that
space, so each key value has the same probability of occurring: 2−n. Since Pr[Enck(m) = c :
k ← Gen] is independent of the message m, it must be equal for any pair m1,m2 ∈M.

This is really cool! But also really inconvenient: the keys need to be as large as the
message and you can’t reuse a key. If you do reuse a key, you suddenly reveal a lot of
information to Eve: she can compute c1 ⊕ c2 = (m1 ⊕ k)⊕ (k ⊕m2) = m1 ⊕m2. But this
possibility for a leak doesn’t contradict our proof! We assumed (see Definition 4) that you
randomly generate the key for each message. Used properly, this scheme is unbreakable. It
is absolutely and entirely impossible to break. Note that we’ve put no conditions on our
adversary here. Eve might have infinite computational power or resources or anything—
even an oracle that can solve undecidable problems. None of that matters; it cannot be
broken if we play by the rules we’ve established.

In fact, not only is it unbreakable, but it turns out to be the most efficient unbreakable
scheme. Alas, we cannot get perfect security without paying for our lunch somehow: in this
case, long keys. Let’s try to prove that.

Theorem 3 If a symmetric-key encryption scheme (Gen,Enc,Dec) is Shannon-secret and
perfectly correct, then |K| ≥ |M|.

Lecture 2, Page 6

Proof: Let D be uniform overM = {0, 1}n. We will fix c such that Pr[c = Enck(m) : m←
D, k ← Gen] > 0. Let us notate the set of possible messages that could lead to c as

M(c) = {m ∈M : ∃k ∈ K such that m = Deck(c)}

Since Dec is deterministic,9 we know that the set M(c) must be at most as large as K.

|M(c)| ≤ |K|

Assume toward contradiction that |K| < |M|. Then, there must be some message m′ in
M that is not in M(c).

∃m′ ∈M such that m′ /∈M(c)

Then, by correctness:

Pr[m = m′|c = Enck(m) : m← D, k ← Gen] = 0

But this is not equal to Pr[m = m′ : m← D] = 2−n. We have contradicted Shannon secrecy.
If we want both correctness and shannon secrecy, we cannot have |K| < |M|; instead we
must have |K| ≥ |M|.

Corollary 1 The key length of OTP is optimal for a perfectly-secret, perfectly-correct en-
cryption scheme.

Note 3 (A fun fact) if you have even one bit more message than key, Eve’s chance of
correctly distinguishing between messages (as in Definition 3) rises to at least 5/8, no matter
what you do [Ps10].

Next time, we will begin to constrain our adversary. If we make assumptions about
Eve’s computing power or ability to solve certain hard problems, we can build much more
practical schemes.

References

[Hor23] John Horgan. My meeting with claude shannon, father of
the information age. https://johnhorgan.org/cross-check/

my-meeting-with-claude-shannon-father-of-the-information-age, 2023.

[Ps10] Rafael Pass and abhi shelat. A course in cryptography. https://www.cs.cornell.
edu/courses/cs4830/2010fa/lecnotes.pdf, 2010.

[Sha38] Claude E. Shannon. A symbolic analysis of relay and switching circuits. Transac-
tions of the American Institute of Electrical Engineers, 57(12):713–723, 1938.

9This must be true if the scheme is perfectly correct.

Lecture 2, Page 7

https://johnhorgan.org/cross-check/my-meeting-with-claude-shannon-father-of-the-information-age
https://johnhorgan.org/cross-check/my-meeting-with-claude-shannon-father-of-the-information-age
https://www.cs.cornell.edu/courses/cs4830/2010fa/lecnotes.pdf
https://www.cs.cornell.edu/courses/cs4830/2010fa/lecnotes.pdf

	Topics Covered
	Claude Shannon
	Secrecy in Three Flavors
	One-Time Pad

