
CS 6222 Grad Crypto September 30, 2025

Lecture 11: Universal OWFs

Lecturer: Jack Doerner Scribe: Amir Moeini

1 Topics Covered

• Construction of the universal OWF funiv

• Proof that funiv is 2n-weak if any strong OWF exists

2 Motivation

Cryptography rests on unproven assumptions: we do not know one-way functions exist.
This causes unrest. The goal today is to show that if any strong OWF exists (even non-
constructively), then a specific, explicit function funiv is a weak OWF. From any weak OWF,
we can build a strong OWF, so this gives us a concrete foothold in cryptography from the
bare existence assumption.

3 Definitions

Definition 1 (Strong OWF). A function f : {0, 1}∗ → {0, 1}∗ is a strong OWF if:

1. f is PPT

2. ∀ NUPPT A, ∃ negligible ε s.t. ∀n ∈ N,

Pr
[
f(x′) = f(x) : x← {0, 1}n, x′ ← A(1n, f(x))

]
≤ ε(n).

Definition 2 (µ-weak OWF). For a fixed polynomial µ, f is a µ-weak OWF if:

1. f is PPT.

2. ∀ NUPPT A, ∃n0 s.t. ∀n ≥ n0,

Pr
[
f(x′) = f(x) : x← {0, 1}n, x′ ← A(1n, f(x))

]
≤ 1− 1

µ(n) .

4 Universal OWF

Theorem 1. If a strong OWF exists, then funiv
1 is a 2n-weak OWF.

1Defined below in Construction 1.

Lecture 11, Page 1

Intuition on how to prove this. If the (unknown) strong OWF had a very short
description (say length < log n), then a uniformly random description among all log n-bit
programs hits it with probability 1/n (inverse-polynomial, not negligible). This hints that
guessing a short program and running it for a bounded time on the rest of the input might
produce a weakly one-way mapping. Two issues remain: (i) we must run the guessed
program within a known polynomial time bound, and (ii) formalize the function then show
that the probability of inverting it makes it a weak OWF.

First, let’s bound the strong OWF runtime. A strong OWF is PPT. To ensure that it
runs in some specific polynomial amount of time, we can pad the input with enough (but
polynomial) unused bits .

Lemma 1 (An O(m2) OWF). If a strong OWF f exists, then there exists a strong OWF g
with |g| ≈ |f | (up to a constant in any reasonable encoding) such that g runs in time O(m2)
on m-bit inputs.

Proof Sketch. Assume f runs in time nc for some c > 2 on n-bit inputs. Let m = nc. Define

g(a∥b) = a ∥ f(b), with |b| = n, |a| = nc − n, |a∥b| = m.

• Runtime: Copying a is O(nc − n), evaluating f(b) is O(nc), and overhead costs (e.g.
computing n = c

√
m) are O(m2). Hence g is O(m2).

• One-wayness: An inverter for g yields one for f by embedding the challenge y = f(b)
as the rightmost n bits, and sampling a uniform (nc − n)-bit value a.

• Size: g’s description is just f ’s plus, a constant-size wrapper.

We will use the following fact to ensure that our O(n2) OWF runs to completion within
strict n3 step budget, once n is large.

Fact 1 (O(n2) eventually below n3). If t(n) ∈ O(n2), then ∃nt s.t. ∀n ≥ nt, t(n) ≤ n3.

Additionally, we will need to ensure that as we sample machines of increasing description-
length, no members are ever eliminated from the set. This is guaranteed if we use a mono-
tone encoding.

Fact 2 (Monotone Machine Encodings). There exists a monotone encoding of Turing ma-
chines. That is, there exists some encoding of turing machines into bit-strings such that:

∀M ∈ {0, 1}n ∃M ′ ∈ {0, 1}n+1 s.t. ∀x ∈ {0, 1}∗ M(x) = M ′(x)

Construction 1 (The Universal OWF funiv : {0, 1}∗ → {0, 1}∗).

1. On input x, parse x = M∥x′ where M is the first log |x| bits interpreted as a TM
description, and x′ is the remaining suffix.

2. Run M on input x′ for |x|3 steps.

3. If M halts with output y on its tape, output

funiv(x) = M ∥ y.

Lecture 11, Page 2

4. Otherwise, output a fixed failure tag ⊥.

Now we’re ready to prove that Construction 1 is a 2n-weak OWF.

Proof of Theorem 1. Assume there exists a strong OWF g′ (unknown and possibly non-
explicit). By lemma 1, there is a strong OWF g with |g| ≈ |g′| running in time O(m2). By
Fact 1, there is a constant ng such that g halts within m3 steps on all m ≥ ng. Let Mg be

a shortest monotone encoding for g. For each n ≥ |Mg|, let M (n)
g be the length-n extension

of Mg that encodes the same machine g per Fact 2. Note that such an extension always
exists when n ≥ |Mg|.

Claim 1 (Randomly hitting the strong OWF machine). When |x| = n, Construction 1
interprets the first ⌊log n⌋ bits of x as a Turing machine M . ∀ n ≥ 2|Mg | ,

Pr
[
M = M (logn)

g : M ← {0, 1}logn︸ ︷︷ ︸
Exp Picks g

]
=

1

2logn
=

1

n
.

Claim 2 (Some negligible term clean up). ∀ negligible ε ∃ nε s.t. ∀ n ≥ nε,(
1− 1

n

)
+ ε(n− logn) ≤ 1− 1

2n
.

The proofs of the above two claims are intuitive. Next, for any NUPPT A, the law of total
probability yields

Pr
[
funiv(x) = funiv(x

′) : x← {0, 1}n, x′ ← A(1n, funiv(x))︸ ︷︷ ︸
A inverts

]
= Pr

[
A inverts | Exp Picks g

]
· Pr

[
Exp Picks g

]
+ Pr

[
A inverts | ¬Exp Picks g

]
· Pr

[
¬Exp Picks g

]
To find an upper bound, let’s just assume that A inverts any any machine M ̸= M

(logn)
g

with probability 1. Combining the last equasion with Claim 1, ∀ n ≥ 2|Mg | we have

Pr[A inverts] ≤ Pr[A inverts | Exp Picks g] · 1
n

+
(
1− 1

n

)
.

To get an upper bound for Pr[A inverts | Exp Picks g] we should let n ≥ ng to provide enough
compute for funiv to halt. It’s easy to see that if Exp Picks g and Mg runs to completion,
then funiv is a strong OWF.2 Therefore, there exists some negligible function ε′ such that
∀n ≥ max{2|Mg |, ng},

Pr[A inverts | Exp Picks g]

= Pr
[
g(x) = M ′

g(x
′) ∧M logn

g = M ′
g : x← {0, 1}n−logn,M ′

g∥x′ ← A
(
1n,M logn

g ∥g(x)
)]

≤ Pr
[
g(x) = g(x′) : x← {0, 1}n−logn,M ′

g∥x′ ← A
(
1n,M logn

g ∥g(x)
)]

≤ ε′(n− log n). By Definition 1

2There’s a reduction that converts inverting funiv to inverting g by simply concatenating Mg to the
beginning of the challenge.

Lecture 11, Page 3

Therefore, there exists another negligible function ε such that

Pr[A inverts] ≤ ε′(n− log n) · 1
n

+
(
1− 1

n

)
≤ ε(n− logn) +

(
1− 1

n

)
.

Thus by Claim 2, ∃nε s.t. ∀ n ≥ n0 = max{2|Mg |, ng, nε},

Pr[A inverts] ≤ 1− 1

2n
.

Note that µ(n) = 2n didn’t depend on our choice of A, while n0 did (through nε). Thus
this satisfies Definition 2 and funiv is 2n-weak.

Why this is not practical. Security holds only when log n ≥ |Mg|. If the shortest de-
scription of a strong OWF has, say, |Mg| = 1000 bits, then the minimum input length where
the universal OWF actually becomes hard to invert is n ≥ 21000. This is fine asymptotically,
but useless in practice. Whether one can design a more efficient universal OWF (i.e. one
that is plausibly one-way for parameters that can be used in practice) is open.

Lecture 11, Page 4

