CS 6222 Grad Crypto September 30, 2025

Lecture 11: Universal OWFs

Lecturer: Jack Doerner Scribe: Amir Moein:

1 Topics Covered

e Construction of the universal OWF fyniv

e Proof that fyniy is 2n-weak if any strong OWF exists

2 Motivation

Cryptography rests on unproven assumptions: we do not know one-way functions exist.
This causes unrest. The goal today is to show that if any strong OWF exists (even non-
constructively), then a specific, explicit function fyniv is a weak OWF. From any weak OWF,
we can build a strong OWF, so this gives us a concrete foothold in cryptography from the
bare existence assumption.

3 Definitions
Definition 1 (Strong OWF). A function f:{0,1}* — {0,1}* is a strong OWF if:
1. fis PPT
2. ¥ NUPPT A, 3 negligible ¢ s.t. V¥n € N,
Pr [f(a:/) = f(z) : x«{0,1}", 2/ « A", f(x))] < e(n).
Definition 2 (u-weak OWF). For a fized polynomial p, f is a p-weak OWF if:

1. f is PPT.

2. Y NUPPT A, 3Ang s.t. Vn > ng,

Pr[f(z') = f(z) : =+ {0,1}", o' + A(1", f(2))] <1— ﬁ

4 Universal OWF

Theorem 1. If a strong OWF exists, then funiv® is a 2n-weak OWF.

!Defined below in Construction 1.

Lecture 11, Page 1

Intuition on how to prove this. If the (unknown) strong OWF had a very short
description (say length < logn), then a uniformly random description among all log n-bit
programs hits it with probability 1/n (inverse-polynomial, not negligible). This hints that
guessing a short program and running it for a bounded time on the rest of the input might
produce a weakly one-way mapping. Two issues remain: (i) we must run the guessed
program within a known polynomial time bound, and (ii) formalize the function then show
that the probability of inverting it makes it a weak OWEF.

First, let’s bound the strong OWF runtime. A strong OWF is PPT. To ensure that it
runs in some specific polynomial amount of time, we can pad the input with enough (but
polynomial) unused bits .

Lemma 1 (An O(m?) OWF). If a strong OWF [exists, then there exists a strong OWF g
with |g| = | f| (up to a constant in any reasonable encoding) such that g runs in time O(m?)
on m-bit inputs.

Proof Sketch. Assume f runs in time n¢ for some ¢ > 2 on n-bit inputs. Let m = n®. Define
g(alb) = a| f(b), with [b] =n, |a| =n®—n, |a|b] =m.

e Runtime: Copying a is O(n® — n), evaluating f(b) is O(n®), and overhead costs (e.g.
computing n = /m) are O(m?). Hence g is O(m?).

e One-wayness: An inverter for g yields one for f by embedding the challenge y = f(b)
as the rightmost n bits, and sampling a uniform (n® — n)-bit value a.

e Size: g’s description is just f’s plus, a constant-size wrapper.]

We will use the following fact to ensure that our O(n?) OWF runs to completion within
strict n® step budget, once n is large.

Fact 1 (O(n?) eventually below n®). If t(n) € O(n?), then In; s.t. ¥n > ny, t(n) < nd.

Additionally, we will need to ensure that as we sample machines of increasing description-
length, no members are ever eliminated from the set. This is guaranteed if we use a mono-
tone encoding.

Fact 2 (Monotone Machine Encodings). There exists a monotone encoding of Turing ma-
chines. That is, there exists some encoding of turing machines into bit-strings such that:

VM € {0,1}" IM’' € {0,1}" s.t. Vo € {0,1}* M(z) = M'(x)
Construction 1 (The Universal OWF finiy : {0,1}* — {0,1}).

1. On input z, parse v = M|z’ where M 1is the first log |x| bits interpreted as a TM
description, and ' is the remaining suffiz.

2. Run M on input x' for |z|3 steps.

3. If M halts with output y on its tape, output

funiV(x) = M ” Y.

Lecture 11, Page 2

4. Otherwise, output a fized failure tag L.

Now we're ready to prove that Construction 1 is a 2n-weak OWF.

Proof of Theorem 1. Assume there exists a strong OWF ¢’ (unknown and possibly non-
explicit). By lemma 1, there is a strong OWF g with |g| ~ |¢/| running in time O(m?). By
Fact 1, there is a constant ng such that g halts within m?> steps on all m > ng. Let M, be
a shortest monotone encoding for g. For each n > |M,|, let Mén) be the length-n extension
of M, that encodes the same machine g per Fact 2. Note that such an extension always
exists when n > |M,].

Claim 1 (Randomly hitting the strong OWF machine). When |z| = n, Construction 1
interprets the first |logn| bits of x as a Turing machine M. ¥ n > 2IMq|
1 1

1
PrM =M™ : M« {0,1}*"] = Jlogn g’

Exp Picks g
Claim 2 (Some negligible term clean up). V negligible ¢ 3 n. s.t. Vn > n,

(1—%>+€(n—logn) < 1—i.

The proofs of the above two claims are intuitive. Next, for any NUPPT A, the law of total
probability yields

Pr [funi(®) = fun(@') + @ (0,1}, @'« AQ”, furin () |
A inverts
=Pr [A inverts | Exp Picks g] - Pr [Exp Picks g]
+ Pr [A inverts | = Exp Picks g] - Pr [ﬂ Exp Picks g]

To find an upper bound, let’s just assume that A inverts any any machine M # Mélog n)

with probability 1. Combining the last equasion with Claim 1, V n > 2™l we have
1 1
Pr[A inverts] < Pr[A inverts | Exp Picks g] - — + (1 — —).
n n

To get an upper bound for Pr[A inverts | Exp Picks g] we should let n > n, to provide enough
compute for f,ni, to halt. It’s easy to see that if Exp Picks g and M, runs to completion,
then funiv is a strong OWF.? Therefore, there exists some negligible function &’ such that
Vn > max{2Msl n 1,

Pr[A inverts | Exp Picks g]
— Pr [g(a:) = M/ (2/) A M5 = M/ 2 {0,1}"75" M/ [|a! + A (171, M;Og”Hg(x)”
< Prg(a) = g(a') s @+ {0,1)" 75" My o’ A (17, Mg))|
<é'(n—logn). By Definition 1

2There’s a reduction that converts inverting fum to inverting g by simply concatenating M, to the
beginning of the challenge.

Lecture 11, Page 3

Therefore, there exists another negligible function e such that
: / 1 1
Pr[A inverts] < &'(n —logn) - — + (1 - —)
n n
1
< g(n—logn) + (1 - —>.
n

Thus by Claim 2, 3n. s.t. Vn > ng = max{Q‘Mg‘,ng, ne},

1
Pr[A inverts] < 1 — —.
2n
Note that p(n) = 2n didn’t depend on our choice of A, while ng did (through n.). Thus
this satisfies Definition 2 and fyny is 2n-weak. O

Why this is not practical. Security holds only when logn > [M,|. If the shortest de-
scription of a strong OWF has, say, |M,| = 1000 bits, then the minimum input length where
the universal OWF actually becomes hard to invert is n > 21990, This is fine asymptotically,
but useless in practice. Whether one can design a more efficient universal OWF (i.e. one
that is plausibly one-way for parameters that can be used in practice) is open.

Lecture 11, Page 4

