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Lecture 10: Hardness Amplification for OWFs

Lecturer: Jack Doerner Scribe: Andrew Parkinson

1 Topics Covered

• Review of Definitions

• Weak OWFs Imply Strong OWFs

2 Review of Definitions

Definition 1 (Strong One-Way Function). A function f : {0, 1}∗ → {0, 1}∗ is a strong
OWF if

1. f is PPT

2. For all NUPPT A, ∃ a negligable function ε, s.t. ∀ n ∈ N

Pr[f(x′) = f(x) : x← {0, 1}n, x′ ← A(1n, f(x))] < ε(n)

Definition 2 (µ-Weak OWF). A function f : {0, 1}∗ → {0, 1}∗ is a weak OWF if

1. f is a PPT

2. ∃ a polynomial µ s.t. ∀ NUPPT A, ∃n0 ∈ N s.t. ∀n > n0

Pr[f(x′) = f(x) : x← {0, 1}n, x′ ← A(1n, f(x))] < 1− 1

µ(n)

Note that the above definitions do not insist that x′ = x. Multiple preimages of f(x)
might exist if f is not one-to-one, and the adversary wins the games if it finds any such
pre-image.

3 Weak OWFs Imply Strong OWFs

Theorem 1 (OWF Hardness Amplification Theorem). For every weak OWF f : {0, 1}n →
{0, 1}∗, ∃ some polynomial m s.t. if we define a function f ′ : {0, 1}n·m(n) → {0, 1}∗ s.t.

f ′ : (x1, ..., xm(n)) 7→ (f(x1), ..., f(xm(n))

then f ′ is a strong OWF. If f is µ-weak for some polynomial µ, then it is sufficient to set
m(n) = 2n · µ(n).
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We will give an intuitive overview before proving the above theorem formally. We need
to construct a reduction R that inverts f w.p. ≥ 1 − 1

µ(n) . given some A′ that inverts f ′

with non-negligable probability. R receives a single OWF image y from the weak-OWF
game, and must construct an instance y⃗ of the strong OWF game for f ′, and then uses A′

to invert y⃗.
Notice that in the strong OWF game for f ′, the probability that any fixed location in y⃗

will contain a biprime1 is noticeable but not overwhelming. This implies that it’s possible
for A′ to invert y⃗ with noticeable probability while also never factoring biprimes that appear
in any fixed location in y⃗, and consequently our reduction R cannot embed y in any fixed
location.

Instead, R will sample a random position i, and embed y there (being careful to preserve
the distribution of values at that position). At all other positions, we will sample random
values a distribution to match those sampled in the strong OWF game for f ′.

Proof of Theorem 1. We will prove the contrapositive statement. Suppose that there exists
some adversary A′ that violates the strong OWF property of f ′. We will construct a
reduction that uses A′ to violate the µ-weak OWF property of f .

Let p′ be a polynomial, let p(n) = p′(n ·m(n)) = p′(2n2 ·µ(n)), and let A′ be a NUPPT
adversary such that for infinitely many n ∈ N we have

Pr[f ′(A′(1n·m(n), y⃗)) = y⃗ : x⃗← {0, 1}n·m(n), y⃗ := f ′(x)] >
1

p′(n ·m(n)
=

1

p(n)
.

We first specify a “base-case” reduction that can be called repeatedly:

Construction 1 (R0(1
n, y)).

1. i← [m(n)], yi := y

2. ∀j ∈ [m(n)] \ {i}, xj ← {0, 1}n, yj := f(xj)

3. let z⃗ ← A′(1n·m(n), y⃗)

4. Output zi if f(zi) = y; otherwise output ⊥

For some polynomial q we define a set of “good” inputs Gn ⊆ {0, 1}n s.t.

Gn =

{
x ∈ {0, 1}n : Pr[R0(1

n, f(x)) = ⊥] < 1− 1

q(n)

}
(1)

And then we define the full reduction R(1n, y) to call n · q(n) instances of R0(1
n, y), and

output the first non-⊥ result. If all n · q(n) instances of R0 output ⊥, then R does too.
We will argue that there is a way to set q such that Gn is big enough that there is a

non-negligible chance that a random input is in it, and the probability that R inverts the
image of that input is also non-negligible.

We begin with a few inequalities that do not depend upon the value of q. Recall that
R only outputs ⊥ if all of its internal calls to R0 output ⊥. Thus we have

Pr[(R(1n, f(x)) = ⊥ | x ∈ Gn : x← {0, 1}n] <
(
1− 1

q(n)

)n·q(n)
< e−n

1A biprime is simply the product of two primes.
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for infinitely many n ∈ N, and we can use this to compute a general upper bound on the
probability that R fails in the strong OWF game. For infinitely many n ∈ N

Pr[R(1n, f(x)) = ⊥ : x← {0, 1}n] = Pr
x
[R(1n, f(x)) = ⊥ | x ∈ Gn] · Pr

x
[x ∈ Gn]

+ Pr
x
[R(1n, f(x)) = ⊥ | x /∈ Gn] · Pr

x
[x /∈ Gn]

< e−n + Pr
x
[x /∈ Gn]

The above equation is an upper bound on failure probability. The next claim follows easily:

Claim 1. f is not a µ-weak OWF if ∃n0 ∈ N s.t. ∀n ≥ n0

e−n + Pr
x
[x /∈ Gn] ≤

1

µ(n)

Now we observe that for any polynomial µ, ∃n0 ∈ N s.t. ∀n ≥ n0

e−n + Pr
x
[x /∈ Gn] ≤ e−n +

1

2µ(n)
≤ 1

µ(n)

and thus we have:

Claim 2. f is not a µ-weak OWF if

|Gn| ≥ 2n ·
(
1− 1

2µ(n)

)
.

Finally, we are ready to specify a particular polynomial q.

Claim 3. If q(n) = 2m2(n) · p(n) = 8n2 ·µ2(n) · p′(2n2 ·µ(n)), then |Gn| ≥ 2n ·
(
1− 1

2µ(n)

)
,

and f is not a µ-weak OWF.

Proof of Claim 3. We will prove that if

q(n) = 2m2(n) · p(n) and |Gn| < 2n ·
(
1− 1

2µ(n)

)
then f ′ must be a strong OWF, contradicting our assumption that there exists some NUPPT
A′ that inverts f ′ with probability greater than 1/p(n) for some polynomial p. We will begin
by giving a name to the event that A′ that inverts f ′, and partitioning that event into two
two sub-events that correspond to inverting f ′ on inputs that are or are not “good” ones,
as defined by Equation 1. We have:

Pr
x⃗
[f ′(A′(1n·m(n), y⃗)) = y⃗ : y⃗ := f ′(x⃗)︸ ︷︷ ︸

“A′ Succeeds”

] = Pr
x⃗
[A′ Succeeds ∧ ∃i ∈ [m(n)] s.t. xi /∈ Gn]

+ Pr
x⃗
[A′ Succeeds ∧ ∀i ∈ [m(n)], xi ∈ Gn]

(2)

We will bound the two terms on the right hand side of the above equation using the
next two claims.

Claim 3A. Prx⃗[A′ Succeeds ∧ ∃i s.t xi /∈ Gn] < 1/2p(n)
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Proof. We have

Pr
x⃗
[A′ Succeeds ∧ ∃i s.t xi /∈ Gn]

≤
∑

j∈[m(n)]

Pr
x⃗
[A′ Succeeds ∧ xj /∈ Gn]

≤
∑

j∈[m(n)]

Pr
x⃗
[A′ Succeeds | xj /∈ Gn]

≤
∑

j∈[m(n)]

m(n) · Pr
x
[R0(f(x) ̸= ⊥ | x /∈ Gn] (3)

<
∑

j∈[m(n)]

m(n) · 1

q(n)
(4)

=
m2(n)

2m2(n) · p(n)
=

1

2p(n)

where Equation 3 follows from the fact that R0 calls A′ internally, and it has a 1/m(n)
chance of guessing the correct value of j when constructing the instance y⃗ that it gives to
A′ as input, and where Equation 4 follows from Equation 1.

Claim 3B. Prx⃗[A′ Succeeds ∧ ∀i ∈ [m(n)], xi ∈ Gn] < e−n

Proof. We have

Pr
x⃗
[A′ Succeeds ∧ ∀i ∈ [m(n)], xi ∈ Gn]

≤ Pr
x⃗
[∀i ∈ [m(n)], xi ∈ Gn]

<

(
1− 1

2µ(n)

)m(n)

(5)

=

(
1− 1

2µ(n)

)2n·µ(n)
< e−n

where Equation 5 follows from the assumption toward contradiction at the beginning of our
proof of Claim 3 that

|Gn| < 2n ·
(
1− 1

2µ(n)

)
Now we can plug Claims 3A and 3B into Equation 2, and we see that

Pr
x⃗
[A′ Succeeds] <

1

2p(n)
+

1

en
.

It remains only to observe that since p is a polynomial, we have

∃n0 ∈ N s.t. ∀n ≥ n0 Pr
x⃗
[A′ Succeeds] <

1

p(n)
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which contradicts our assumption (at the beginning of the proof of Claim 3) that A′ inverts
f ′ with probability greater than 1/p(n). Thus it must be the case that relative to the A′,
p, and q we have specified,

|Gn| ≥ 2n ·
(
1− 1

2µ(n)

)
and by Claim 2, it follows that f is not a µ-weak OWF.

Note that the choice of q is free—the upper bound on R’s failure probability depends
upon it, but nothing in the construction f ′ does. Claim 3 shows simply that there exists a
q such that Gn has the properties we need; it follows that if f ′ is not a strong OWF, then
f is not a weak OWF.
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