
CS6222 Grad Cryptography, Homework 1 Due: Sep 18, 2025, 1:59pm

CS6222 Grad Cryptography, Homework 1
Response by: Your Name, (Computing ID)

Total points: 50 awarded maximum. 54 available. Points are noted after each problem.

Instructions. For each problem, typeset your solution in the answer environment, and if
there are sub-problems, mark them clearly. Feel free to use as much space as you require, and
be sure to update your name and computing ID above, and the acknowledgements box at the
end.

Policies. In short, you are encouraged to think about the problems on your own, and then
discuss them and work toward solutions with your classmates. You must write and submit
your own solutions. You may also read any published material that helps you come to an
understanding of the problems, but you must acknowledge and/or reference any discussion or
published material, with the exception of lecture notes, in-class and in-office-hours discussions,
textbook sections we have covered, and basic LaTeX help or dictionary lookups. It is a violation
of the honor code if any of the following occur:

• You copy text directly from any source.

• You use any material or discussion without acknowledgment or citation, excluding the
above special cases.

• You are unable to explain your work orally.

See https://jackdoerner.net/teaching/2025/Fall/CS6222/#policies for more details.

This homework recaps a few preliminary concepts that we will use in later lectures, and asks a few
simple questions about perfect security.

Notation. For any n ∈ N, let [n] = {1, 2, ..., n}. For any finite set S, let |S| be the cardinality of
S.

Problem 1 (Reductions, 2pt each). For each sub-problem, indicate if the proposition is True or
False, and justify your answer in one or two sentences.

Let F,G : {0, 1}∗ → {0, 1} be two functions with boolean outputs. We say that F reduces1 to G (we
denote this F ≤p G) if there is a polynomial-time computable function R : {0, 1}∗ → {0, 1}∗ such
that for every x ∈ {0, 1}∗, F (x) = G(R(x)). Let P be the class of all polynomial-time computable
functions.

(a) F ≤p G and G ∈ P implies F ∈ P.

(b) F ≤p G and F ∈ P implies G ∈ P.

(c) F ≤p G and G ≤p F implies F ∈ P.

Problem 2 (Statistically Close Distributions, 4pts). Let X and Y be random variables over the
domain U . Their statistical distance (also known as statistical difference or total variation distance)

1Specifically, F is Karp-reducible to G.

1 of 4

https://jackdoerner.net/teaching/2025/Fall/CS6222/#policies


CS6222 Grad Cryptography, Homework 1 Due: Sep 18, 2025, 1:59pm

is
SD(X,Y ) = max

T ⊆U
|Pr[X ∈ T ]− Pr[Y ∈ T ]|.

Let X = {X1, X2, . . .} and Y = {Y1, Y2, . . .} be two ensembles of distributions.2 Suppose that there
exists a function ε(n) such that for all n ∈ N, SD(Xn, Yn) ≤ ε(n). Prove that for any deterministic
algorithm D, for all n ∈ N, ∣∣∣∣ Pr

t←Xn

[D(t) = 1]− Pr
t←Yn

[D(t) = 1]

∣∣∣∣ ≤ ε(n).

Remark: we say that X and Y are statistically close if and only if ε is a negligible function. This proves that statistically close

ensembles are always indistinguishable, even for unbounded-time D.

Problem 3 (Some Call it ∆, 4pts). Prove that statistical distance obeys the triangle inequality.
That is, prove that for any distributions X,Y, Z over some domain U it holds that

SD(X,Z) ≤ SD(X,Y ) + SD(Y,Z)

Problem 4 (A Statistically Far Distribution, 4pts). Let Un be the uniform distribution over
{0, 1}n and let G : {0, 1}n → {0, 1}n+1 be any unbounded-time deterministic function on n-bit
inputs. Show that

SD(Un+1, G(Un)) ≥
1

2
.

Problem 5 (Equivalence of Definitions, 6pts each). Let (Gen,Enc,Dec) be an encryption scheme
on message-spaceM and ciphertext-space C. In class, we established that such a scheme is perfectly
secret if for every m0,m1 ∈M and every c ∈ C, we have

Pr [Enck(m0) = c : k ← Gen] = Pr [Enck(m1) = c : k ← Gen] (1)

We also established that it is perfectly indistinguishable if for every two-part unbounded-time algo-
rithm D = (D1, D2), we have

Pr [D2(c, s) = b : (m0,m1, s)← D1, b← {0, 1}, k ← Gen, c← Enck(mb)] =
1

2
(2)

(a) Prove that (Gen,Enc,Dec) is perfectly indistinguishable if it is perfectly secret.

(b) Prove that (Gen,Enc,Dec) is perfectly indistinguishable only if it is perfectly secret.

Hint: for part (b), consider that an encryption scheme is not perfectly indistinguishable if you can construct an algorithm D

that violates Equation 2.

Problem 6 (Deterministic WLOG, 2pts each). This question explores the role of randomness in
the context of perfect security. Recall that we define randomized algorithms to have access to a
string of uniform bits.

2That is, each of them is a set of distributions indexed by the natural numbers.
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(a) Show that for any encryption scheme satisfying Equation 1, regardless of the distribution
from which Gen samples k, there is another scheme (possibly with a different keyspace K′)
that samples k from K′ uniformly, and produces the same distribution of ciphertexts for any
given message as the original scheme did.

(b) Show that for any randomized encryption scheme satisfying Equation 1, there is another
scheme (possibly with a different keyspace K′) that has a deterministic encryption procedure,
and produces the same distribution of ciphertexts for any given message as the original scheme
did.

(c) Prove that in Equation 2 we may assume the distinguisher D is deterministic without loss of
generality.

Problem 7 (Slightly-Imperfect Secrecy, 6pts). Imagine that we weakened the definition of perfect
secrecy just a little bit. In particular, suppose we define the property of “ε-imperfect secrecy” to
mean that for all m1,m2 ∈M and every c ∈ C,

|Pr [Enck(m1) = c : k ← Gen]− Pr [Enck(m2) = c : k ← Gen]| ≤ ε

for some very small ε. Construct an encryption scheme and prove that it has the following proper-
ties:

• Perfect correctness.

• “ε-imperfect secrecy” with ε = 2−1000.

• Ciphertexts completely reveal the plaintext with probability 1.

Problem 8 (Two-Time Perfect Encryption, 6pts each). In class, we explored what might happen
if we use one-time pad to encrypt multiple messages under the same key, and observed that our
definition of perfect secrecy considers only a single encrypted message. Consider a seemingly-
natural definition of security for two messages that are encrypted under the same key: For all
m1,m2,m

′
1,m

′
2 ∈M and all c1, c2 ∈ C,

Pr [Enck(m1) = c1 ∧ Enck(m2) = c2 : k ← Gen] = Pr
[
Enck(m

′
1) = c1 ∧ Enck(m

′
2) = c2 : k ← Gen

]
(a) Show that no deterministic encryption scheme can achieve the above definition. Show that

randomizing Enc does not help if we insist that the scheme also be correct.

(b) To overcome the limitation we have just proved, let us modify our encryption and decryption
procedures so that they both take the index of the message to be encrypted. That is, for i ∈
{1, 2}, the ith message mi is encrypted by computing Enck(mi, i) and the resulting ciphertext
is decrypted by computing Deck(ci, i). Next, suppose that we modify our definition of two-
time perfect encryption to insist that for all m1,m2,m

′
1,m

′
2 ∈M and all c1, c2 ∈ C,

Pr [Enck(m1, 1) = c1 ∧ Enck(m2, 2) = c2 : k ← Gen]

= Pr
[
Enck(m

′
1, 1) = c1 ∧ Enck(m

′
2, 2) = c2 : k ← Gen

]
.

Construct a simple scheme that meets this notion of security. For an optional extra challenge,
can you do this with |K| ≤ 2 · |M|?

Hint: for part (b), your scheme need not be efficient.
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In this box, you should acknowledge your collaborators and the resources you used, if any. For
example:

Problem 1: I discussed this problem with Alice and Bob. In addition, I asked Carol for help
understanding Conditional Probability, but we did not discuss the problem further.

Problem 2: I asked ChatGPT “What is a turing machine?”, and it gave me the following
transcript: https://chatgpt.com/share/68b4dba7-e19c-8013-a137-e8db901493b7.

Problem 3: It helped me to read the proof of [Vad12, Theorem X, Page Y].

Instructor’s Acknowledgments

Problems in this homework have been borrowed from or inspired by a number of sources.
Citations can be provided on request, after the homework is completed.
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