Secure Stable Matching
An Efhicient Solution Using Multiparty Computation

Jack Doerner . David Evans . abhi shelat

jhd3pa@virginia.edu evans@virginia.edu abhi@virginia.edu

() [ABICDIETF]G [H]I [@(2PC Random

Permutation Generation

A Stable matching is a bijection between two sets of participants
) (the Suitors and the Reviewers) such that there is no potential Suit-
or-Reviewer pair who would rather be matched to each other than to

80 06 <4—(Applyto{0,..9} whomever they have been assigned.

H Stable matching algorithms are used in many interesting applica-
vy tions, including matching medical residents to residency programs,

| d J J @ (pC P) students to schools, and candidates to sororities, as well as in special
ermutation Inversion]) _) _
types of auctions and in managing supply chains. In practice, stable

) matching processes are often outsourced to a trusted arbiter in order to
DOOOODOO O O O <« . e . .
hide the participants’ reported preferences from their counterparties.
) We develop a method to run instances of stable matching using secure
v it v c v { computation, in order to obviate the need for a trusted third party,

(5) Cd d d ‘ dD d dA dG‘J d while preserving the participants’ privacy.

We observe that in the classic Gale-Shapley algorithm, each suit-
The initialization of an Oblivious Linked List or’s individual preference list is accessed strictly in order, and each
element is accessed only once. Furthermore, a secure implementation
. 5 of Gale-Shapley does not require any accesses to be dependent on

oblivious conditions (the algorithm must obliviously select which list

s 1 4] 1] 8] o] 5] [6] 23] oizlololoa|lelole Dlololelelnlola is accessed, but exactly one preference list is always accessed). Thus,
we need a data structure that iterates over n elements, in order, while
hiding the progress of that iteration.

(8

ABCDEFGH KIL IMIN JO IP |m|Q JR JS [T U [V W [X

Instead of using a generic ORAM, we design a new data structure
to satisfy these requirements more efficiently, which we call an oblivious
linked list. This construction works similarly to an ordinary linked list
[Permutation Network J in that it consists of a series of elements, each having, in addition to its

data, a reference to the next element in the series. However, the list is
— jointly permuted by both parties according according to some shared

randomness, and the forward references are stored in garbled form.

To construct an oblivious linked list, we first generate an oblivious
permutation and its inverse. To each element i of the data array, we
append element i+1 of the inverse permutation, which corresponds to
the physical index of element i+1 of the permuted data array. We then
apply the permutation to the data array using a Waksman Network,
and store the first element of the inverse permutation in a variable.

Unlike an ORAM or an oblivious queue, our oblivious linked list
can be traversed in constant time. Each successive access is performed
by revealing the physical index of the current element to both parties,
who will find the physical index of the next element stored in garbled
form along with the element’s data.

This construction permits us to iterate through a single preference
list. We can extend it to iterate through multiple preference lists by
permuting multiple lists together in a single array, and storing their
metadata (i.e., the garbled form of the next physical index in each list)
in another data structure.

The traversal of one of three interleaved lists.

While our solution still requires an ORAM of #n elements in order

define InitializeMultilist({data), entrylndices): to maintain the current matches for each of the reviewers, removing the
(m) < random permutation on |(data)| elements. . 5 . .

71} « InvertPermutation(() otherwise necessary n* element ORAM makes a significant improve-
(multilist) < & ment in practice and a slight improvement in theory. Furthermore, our
(entryPointers) « & LT]]]
for i from 0 to |(data)| — I: new data structure can be initialized by sorting, which dramatically

if i € entryIndices:
. . _1
(entryPointers) < (entryPointers) U {({m >l}
(multilist); < {(data);, <7r_1>l.+1}
{multilist) < Permute((multilist), (7))
return { (multilist), (entryPointers) }

reduces the initialization time compared to previous techniques.

--------- Textbook Algorithm —— Improved Algorithm

define TraverseMultilist((multilist), (p)):
p < Reveal({(p))

return (multilist), @ Linear Scan Circuit ORAM @ Square-Root ORAM

define SecureGaleShapley((SuitorPreferences), (ReviewerPreferences),n): 6
(Preferences) < & 10° T T T | | T 3
for i from O ton —1: ;]

for j from O to n— 1: 105
(Preferences);,, ; < {(si) < i, (ri) < j, (rr) < (ReviewerPreferences),,, . ;} E
(Preferences);, . iy 1)4,—1 ¢ BatcherSort({Preferences);, .. ;. 1y,,—1, (SuitorPreferences), .\ 1)1

for i from n® to 2n> —n— 1:
(Preferences); <— {(si) < @, (ri) <~ @, (rr) < I}
{(multilist), (entryPointers)} < InitializeMultilist({Preferences), {0,n,2n, ...,n*})
UnmatchedSuitors <— new oblivious queue
for i from O ton — 1:
UnmatchedSuitors <— QueuePush(UnmatchedSuitors, {i, (entryPointers),})
(dummy) < (entryPointers),
(done) + false
ReviewerMatches <— new ORAM

for i from 0 to n®> — 1:
(if) “QueuelsEmpty(UnmatchedSuitors):
{(nextSuitor),(p)} < QueuePop(UnmatchedSuitors)
(else):
(p) < (dummy)
(done) < true
{(ProposedPair), (p')} < TraverseMultilist((multilist), (p))
(if) (done) = true:
. <>dummy> () Number of Pairs
else):
{{CurrentPair), (p")} +- OramRead(ReviewerMatches, (ProposedPair).(ri))
(if) (CurrentPair) = @V (ProposedPair).(rr) < (CurrentPair).(rr):

10'|

Execution Time (seconds)
[
-
(\)

[— —_
S o S
NS — =

ReviewerMatches <+ OramWrite(ReviewerMatches, { (ProposedPair), (p’) }, (ProposedPair).(ri)) Execution Time vs Pair Count. Values are mean wall-clock times in

(if) (CurrentPair) # &: : : : sritiali ; U

UnmatchedSuitors < QueuePush(UnmatchedSuitors, { (CurrentPair).(si), (p”) }) seconds fOI' full I.)I'OtO?Ol execution .mcl.udmg 1n1t1ahzat10n, for im

(Result) « @ plementations using Linear Scan, Circuit ORAM, and Square-Root
for i from O ton—1: .

{(CurrentPair), } « OramRead(ReviewerMatches, i ORAM. For benchmarks of 64 pairs or fewer, we collected 30 samples;

(Result); < (CurrentPair).(si) for benchmarks of 128 and 256 pairs we collected three samples; and

return (Result)

for benchmarks of 512 pairs we collected one sample.

