
Secure Stable Matching
An Efficient Solution Using Multiparty Computation

• •

1 A B C D E F G H I J 2PC Random
Permutation Generation2

2PC Permutation Inversion4

7 9 0 5 2 6 8 1 4 3

A B C D E F G H I J73 09 25 86 41 3

75

7 9 0 5 2 6 8 1 4 3

C H E J I D F A G B
5 6 23 98 1 04

Apply to {0,...,9}

15

Permutation Network

I J K L M N O PA B C D E F G H Q R S T U V W X

I J K L M N O PA B C D E F G H Q R S T U V W X

A W E I U N B FL O V S K P G X Q R D T M C J H

14 21 18 10 15 6 23 22 0 4 20 13 1 5 17 3 19 12 2 9 7
8 11 16

8 11 1614 21 18 10 15 6 23 22 0 4 20 13 1 5 17 3 19 12 2 9 7

8 11 16
14 21 181015 623 22 0420 1315 17 319 1229 7

15
A W E I U N B FL O V S K P G X Q R D T M C J H8 11 16

14 21 181015 623 22 0420 1315 17 319 1229 7

define InitializeMultilist(〈data〉,entryIndices):
〈π〉 ← random permutation on |〈data〉| elements.〈
π−1〉← InvertPermutation(〈π〉)
〈multilist〉 ←∅
〈entryPointers〉 ←∅
for i from 0 to |〈data〉|−1:

if i ∈ entryIndices:
〈entryPointers〉 ← 〈entryPointers〉∪{

〈
π−1〉

i}
〈multilist〉i ←{〈data〉i,

〈
π−1〉

i+1}
〈multilist〉 ← Permute(〈multilist〉,〈π〉)
return {〈multilist〉,〈entryPointers〉}

define TraverseMultilist(〈multilist〉,〈p〉):
p ← Reveal(〈p〉)
return 〈multilist〉p

define SecureGaleShapley(〈SuitorPreferences〉,〈ReviewerPreferences〉,n):
〈Preferences〉 ←∅
for i from 0 to n−1:

for j from 0 to n−1:
〈Preferences〉i∗n+ j ←{〈si〉 ← i,〈ri〉 ← j,〈rr〉 ← 〈ReviewerPreferences〉i∗n+ j}

〈Preferences〉i∗n:(i+1)∗n−1 ← BatcherSort(〈Preferences〉i∗n:(i+1)∗n−1,〈SuitorPreferences〉i∗n:(i+1)∗n−1)

for i from n2 to 2n2 −n−1:
〈Preferences〉i ←{〈si〉 ←∅,〈ri〉 ←∅,〈rr〉 ←∅}

{〈multilist〉,〈entryPointers〉} ← InitializeMultilist(〈Preferences〉,{0,n,2n, ...,n2})
UnmatchedSuitors← new oblivious queue
for i from 0 to n−1:

UnmatchedSuitors←QueuePush(UnmatchedSuitors,{i,〈entryPointers〉i})
〈dummy〉 ← 〈entryPointers〉n
〈done〉 ← false
ReviewerMatches← new ORAM
for i from 0 to n2 −1:

〈if〉 ¬QueueIsEmpty(UnmatchedSuitors):
{〈nextSuitor〉,〈p〉} ←QueuePop(UnmatchedSuitors)

〈else〉:
〈p〉 ← 〈dummy〉
〈done〉 ← true

{〈ProposedPair〉,〈p′〉} ← TraverseMultilist(〈multilist〉,〈p〉)
〈if〉 〈done〉= true:

〈dummy〉 ← 〈p′〉
〈else〉:

{〈CurrentPair〉,〈p′′〉} ←OramRead(ReviewerMatches,〈ProposedPair〉.〈ri〉)
〈if〉 〈CurrentPair〉=∅∨〈ProposedPair〉.〈rr〉< 〈CurrentPair〉.〈rr〉:

ReviewerMatches←OramWrite(ReviewerMatches,{〈ProposedPair〉,〈p′〉},〈ProposedPair〉.〈ri〉)
〈if〉 〈CurrentPair〉 �=∅:

UnmatchedSuitors←QueuePush(UnmatchedSuitors,{〈CurrentPair〉.〈si〉,〈p′′〉})
〈Result〉 ←∅
for i from 0 to n−1:

{〈CurrentPair〉,_}←OramRead(ReviewerMatches, i)
〈Result〉i ← 〈CurrentPair〉.〈si〉

return 〈Result〉

Figure 2: The Secure Gale Shapley Algorithm. SecureGaleShapley expects to ingest preferences ordered first by suitor index, then by
reviewer index. It returns an array of suitor indices, ordered by the reviewer indices to which the suitors have been paired.

ships among residents. Both members of a couple have syn-
chronized rankings, and they propose and are accepted or
rejected only in pairs. Similarly the breaking of a tentative
match containing one member of a couple causes the other
member’s tentative match to break as well.

2. Contingent programs are programs which require residents
to also match with prerequesite programs. The process for
matching such programs is effectively identical to couples’
matching, except that one proposer has two linked ranking
lists and proposes to multiple reviewers simultaneously. Con-
tingent programs can be combined with couples’ matching to
create four way dependency structures.

3. Program reversions are situations in which programs specify
a desire to accept only even (or odd) numbers of residents,
or situations in which unfilled positions in one program re-
vert to another program. Although they propose a method
for processing reversions, Roth and Peranson speculate that
processing of reversions may be unnecessary.

Unfortunately, these match variations have the effect of remov-
ing the guarantee that a stable matching exists for all possible input
configurations, and they make the problem of finding a stable match
(if one exists) NP-complete [20]. Roth and Peranson’s extensions
do not guarantee that a stable match will be found, even if one does
exist, although they find through analysis of past NRMP data that
stable matches are highly likely to exist and be found in practice.

The match variation extensions function by allowing those pro-
posers and reviewers affected by reversions or displacement by
couples or contingent matches which were themselves subsequently
displaced to rewind their preferences and propose again from the
beginning. The instability chaining algorithm is naturally amenable
to this process, and it is performed at the end of each round, before
new proposers are added. Roth and Peranson also specify that a
loop detector is necessary.

Unfortunately, our linked multi-list construction is fundamen-
tally incompatible with these extensions, due to the fact that it per-
mits each potential pairing to be accessed only once. Before each
rewinding, it would be necessarily to completely reshuffle or re-
generate the preferences array. Reshuffling alone would add a term
of Θ(n2q lognq) to our asymptotic complexity, causing it to be-
come more expensive than the naïve ORAM method, and imprac-
tical for large inputs. Moreover, Roth and Peranson’s extensions
do not guarantee that the algorithm completes in a fixed number of
rounds; thus any secure implementation would be required to leak
the number of rounds required. Although our method does not per-
mit the efficient addition of couples, contingencies, or reversions,
we consider this to be a topic worthy of address in future work.

6. RESULTS
We implemented and benchmarked our secure stable matching

protocols using the Obliv-C [35] multi-party computation frame-
work, which executes Yao’s Garbled Circuits protocol [33] with
various optimizations [36, 6, 10]. Our code was compiled using
gcc version 4.8.4 under Amazon’s distribution of Ubuntu 14.04
(64 bit), with the -O3 flag enabled.

We ran each benchmark on a pair of Amazon EC2 C4.2xlarge
nodes, located within the same datacenter. These nodes are provi-
sioned with 15GiB of DDR4 memory and four physical cores par-
titioned from an Intel Xeon E5-2666 v3 running at 2.9GHz, each
core being capable of executing two simultaneous threads. The
inter-node bandwidth was measured to be 2.58 Gbps, and between-
node network latency to be roughly 150 µs.

Linear Scan Circuit ORAM Square-Root ORAM

Textbook Algorithm Improved Algorithm

Figure 7: Execution Time vs Pair Count. Values are mean wall-
clock times in seconds for full protocol execution including ini-
tialization, for implementations using Linear Scan, Circuit ORAM,
and Square-Root ORAM. For benchmarks of 64 pairs or fewer, we
collected 30 samples; for benchmarks of 128 and 256 pairs we col-
lected three samples; and for benchmarks of 512 pairs we collected
one sample.

All of our implementation and benchmarking code is available
under an open source license from <URL removed for anonymity
requirements>.

6.1 Gale-Shapley
In addition to our oblivious linked multi-list, we used several

other specialized oblivious data structures in our Gale-Shapley se-
cure stable matching implementation where doing so provides us
with the best performance. We used the fastest available imple-
mentations of Square-Root and Circuit ORAM from Zahur et al.2,
and used function application to reduce the number of necessary
ORAM accesses wherever possible. We also used Zahur et al.’s
oblvious queue construction [34], modified to avoid dynamic allo-
cation of new layers by including a constant, public size bound.

To serve as a point of comparison, we implemented and bench-
marked a naïve (“textbook”) version of Secure Gale Shapley, which
omitted our oblivious linked multi-list construction in favor of stor-
ing the preferences array in a single ORAM of size Θ(n2). The
“naïve” version still uses the other oblivious data structures in-
cluding the oblivious queue. It is equivalent to the version of Se-
cure Gale-Shapley described in Zahur et al. [37], which is the best
previously-published secure stable matching result. For both the
naïve and improved versions of Secure Gale-Shapley, we bench-
marked variants based upon Square-Root and Circuit ORAMS, as
well as simple Linear Scan.

Figure 7 and Table 1 present our findings, which are consistent
with our analytical results and confirm that Square-Root ORAM
outperforms both Circuit ORAM and Linear Scan for all tested
parameters. At 128 × 128 members, our algorithm requires 99
seconds. Previously, Terner et al. [28] found that a secure stable
matching protocol on 100 × 100 participants required more than
13 hours, and Keller and Scholl [11] reported a method that could

2https://github.com/samee/sqrtOram/

Execution Time vs Pair Count. Values are mean wall-clock times in
seconds for full protocol execution including initialization, for im-
plementations using Linear Scan, Circuit ORAM, and Square-Root
ORAM. For benchmarks of 64 pairs or fewer, we collected 30 samples;
for benchmarks of 128 and 256 pairs we collected three samples; and
for benchmarks of 512 pairs we collected one sample.

A Stable matching is a bijection between two sets of participants
(the Suitors and the Reviewers) such that there is no potential Suit-
or-Reviewer pair who would rather be matched to each other than to
whomever they have been assigned.

Stable matching algorithms are used in many interesting applica-
tions, including matching medical residents to residency programs,
students to schools, and candidates to sororities, as well as in special
types of auctions and in managing supply chains. In practice, stable
matching processes are often outsourced to a trusted arbiter in order to
hide the participants’ reported preferences from their counterparties.
We develop a method to run instances of stable matching using secure
computation, in order to obviate the need for a trusted third party,
while preserving the participants’ privacy.

We observe that in the classic Gale-Shapley algorithm, each suit-
or’s individual preference list is accessed strictly in order, and each
element is accessed only once. Furthermore, a secure implementation
of Gale-Shapley does not require any accesses to be dependent on
oblivious conditions (the algorithm must obliviously select which list
is accessed, but exactly one preference list is always accessed). Thus,
we need a data structure that iterates over n elements, in order, while
hiding the progress of that iteration.

Instead of using a generic ORAM, we design a new data structure
to satisfy these requirements more efficiently, which we call an oblivious
linked list. This construction works similarly to an ordinary linked list
in that it consists of a series of elements, each having, in addition to its
data, a reference to the next element in the series. However, the list is
jointly permuted by both parties according according to some shared
randomness, and the forward references are stored in garbled form.

To construct an oblivious linked list, we first generate an oblivious
permutation and its inverse. To each element i of the data array, we
append element i+1 of the inverse permutation, which corresponds to
the physical index of element i+1 of the permuted data array. We then
apply the permutation to the data array using a Waksman Network,
and store the first element of the inverse permutation in a variable.

Unlike an ORAM or an oblivious queue, our oblivious linked list
can be traversed in constant time. Each successive access is performed
by revealing the physical index of the current element to both parties,
who will find the physical index of the next element stored in garbled
form along with the element’s data.

This construction permits us to iterate through a single preference
list. We can extend it to iterate through multiple preference lists by
permuting multiple lists together in a single array, and storing their
metadata (i.e., the garbled form of the next physical index in each list)
in another data structure.

While our solution still requires an ORAM of n elements in order
to maintain the current matches for each of the reviewers, removing the
otherwise necessary n2 element ORAM makes a significant improve-
ment in practice and a slight improvement in theory. Furthermore, our
new data structure can be initialized by sorting, which dramatically
reduces the initialization time compared to previous techniques.

The initialization of an Oblivious Linked List

The interleaving of three input arrays to form an Oblivious Linked Multi-List

The traversal of one of three interleaved lists.

Jack Doerner
jhd3pa@virginia.edu

David Evans
evans@virginia.edu

abhi shelat
abhi@virginia.edu

