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Lecture 7: Chosen Plaintext Attacks and CPA-Secure Encryption

Lecturer: Jack Doerner Scribe: Raul Hernandez

1 Topics Covered

• The eavesdropping game and EAV-security.

• Chosen plaintext attacks (CPA) and IND-CPA-security.

• IND-CPA-secure encryption.

2 The eavesdropping game and EAV-security

Today, we are finally going to build encryption. In a previous lecture, we defined single-
message EAV1-security. This definition quantified over all messages and all NUPPT ad-
versaries, which could potentially have the single message hardcoded. Now we will extend
this definition to consider multiple messages, and we will explicitly give the adversary the
ability not just to know but to choose the messages.

Definition 1 (The Eavesdropping Game). The game EAVΠ,A
b for any two-part adversary

A = (A1,A2) and any symmetric encryption scheme Π = (Gen,Enc,Dec) is as follows:

1. k ← Gen(1n) generate a key.

2.
(
m⃗0, m⃗1, s

)
← A1(1

n) such that
∣∣m⃗0

∣∣ = ∣∣m⃗1
∣∣ and for all i ∈ [t], we have that |m0

i | =
|m1

i | where m⃗b =
(
mb

1, · · · ,mb
t

)
.

3. For all i ∈ [t], encrypt ci ← Enck(m
b
i).

4. Output A2 (s, c⃗).

Definition 2A (EAV-security). A symmetric-key encryption (SKE) scheme Π = (Gen,Enc,Dec)
has indistinguishable encryptions under eavesdropping (EAV-security) if for all NUPPT A,
there exists negligible ε such that for all n ∈ N∣∣∣∣Pr îEAVΠ,A

b (n) = b : b← {0, 1}
ó
− 1

2

∣∣∣∣ < ε(n)

Definition 2B (EAV-security (equivalent)). As above, but for all NUPPT A¶
EAVΠ,A

0 (n)
©
n∈N
≈c

¶
EAVΠ,A

1 (n)
©
n∈N
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3 Chosen plaintext attacks (CPA) and IND-CPA-security

Now consider the scenario that we have some message m, and we compute c1 ← Enck(m)
and c2 ← Enck(c1). Notice that the above game tells us nothing about this scenario: it is not
possible for any message in the EAVgame to depend upon a ciphertext, except by chance.
Nevertheless, this is a realistic scenario 1 We can modify our game to capture scenarios like
this one by allowing the adversary to choose plaintexts adaptively based upon all previous
ciphertexts. This gives us the Chosen Plaintext Attack game:

Definition 3 (The CPA Indistinguishability Game). The game IND-CPAΠ,A
b (n) for any

two-part adversary NUPPT A = (A1,A2) and any symmetric encryption scheme Π =
(Gen,Enc,Dec) is as follows:

1. k ← Gen(1n).

2. (m0,m1, s)← AEnck(·)
1 (1n).

3. c∗ ← Enck(mb; r
∗) : r∗ ← randomness domain of Enck.

2

4. Output AEnck(·)
2 (s, c∗).

Definition 4A (IND-CPA-security). A symmetric-key encryption (SKE) scheme Π =
(Gen,Enc,Dec) has indistinguishable ciphertexts under chosen plaintext attacks (IND-CPA-
security) if for all NUPPT A, there exists negligible ε such that for all n ∈ N∣∣∣∣Pr îIND-CPAΠ,A

b (n) = b : b← {0, 1}
ó
− 1

2

∣∣∣∣ < ε(n)

Definition 4B (IND-CPA-security (equivalent)). As above, but for all NUPPT A¶
IND-CPAΠ,A

0 (n)
©
n∈N
≈c

¶
IND-CPAΠ,A

1 (n)
©
n∈N

Almost all practical encryption schemes in use today are (at least putatively) IND-CPA-
secure, and this is usually the minimal notion of security on which we insist for encryption.
Note, however, that stronger security notions exist.

4 Constructing CPA-secure encryption

Note 1. For convenience, let Fk,1ℓ : {0, 1}|k| → {0, 1}ℓ is a PRFwith parametric output
length. Such an object can be constructed by combining any length-preserving PRF with a
PRG.

Construction 1 (Encryption from a PRF for messages of any polynomially-bounded length).

• Gen : 1n 7→ k : k ← {0, 1}n.
1It would be quite unfortunate if encrypting a message twice made it less secure!
2Here we give a name to the random coins used to encrypt mb, so that we can refer to them later.
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• Enc : k,m 7→ r∥
Ä
m⊕ Fk,1|m|(r)

ä
: r ← {0, 1}n

• Dec : k, c 7→
Ä
c′ ⊕ Fk,1|m|(r)

ä
: r∥c′ := c

Theorem 1. If Fk,1ℓ is a PRF then Construction 1 is IND-CPA-secure.

Proof. Consider an inefficient variant of Construction 1 based on random functions:

Construction 2 (Π̃ =
Ä
G̃en, Ẽnc, D̃ec

ä
).

• G̃en : 1n 7→ {f1ℓ : f1ℓ ← Fn,ℓ}ℓ∈N
3

• Ẽnc : {f1ℓ}ℓ∈N ,m 7→ r||m⊕ f1|m|(r) : r ← {0, 1}n.

• D̃ec : {f1ℓ}ℓ∈N , c 7→ c′ ⊕ f1|c′|(r) : c := r||c′.

If we let

HA
0,b =

¶
IND-CPAΠ,A

b (n)
©
n∈N

and HA
1,b =

{
IND-CPA

‹Π,A
b (n)

}
n∈N

then using Lemma 1 and Lemma 2 below, as well as the hybrid lemma (which implies
transitivity for computational indistinguishability), we can show that HA

0,0 ≈c HA
0,1.

Lemma 1. The PRF-security of Fk,1ℓ implies that for all NUPPT A and b ∈ {0, 1}, we

have HA
0,b ≈c HA

1,b.

Proof. Consider the reduction R
O(·,·)
b (1n) with access to an oracle O : 1ℓ×{0, 1}n → {0, 1}ℓ

Construction 3 (R
O(·,·)
b (1n)).

1. Let Êncn : m 7→ r∥m⊕O
Ä
1|m|, r

ä
: r ← {0, 1}n.

2. R
O(·,·)
b emulates (m0,m1, s)← AÊncn(·)

1 (1n) internally.

3. R
O(·,·)
b computes c← Êncn(mb).

4. R
O(·,·)
b outputs AÊncn(·)

2 (c, s).

Claim 1. R
Fk,(·)(·)
b : k ← {0, 1}n ≡ IND-CPAΠ,A

b (1n)

This is true because O(·, ·) = Fk,(·)(·) implies

Êncn(m) ≡ r∥m⊕ Fk,1|m|(r) : r ← {0, 1}n, k ← {0, 1}n

≡ Enck(m) : k ← Gen(1n)

3Notice that keys are infinitely long, and even the descriptions of the individual random functions that
make up a key are exponentially long, relative to the security parameter. We will only use this scheme for
a thought experiment, so this will not be a problem for us.
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Claim 2. R
f(·)(·)
b (1n) : {f1ℓ : f1ℓ ← Fn,ℓ}ℓ∈N ≡ IND-CPA

‹Π,ℓ
b (1n).

This second claim is analogous to the previous claim, and it can be shown in a similar
way. Finally, by the PRF-security of F and the closure of computational indistinguishability
under NUPPTpostprocessing, we have{

R
f(·)(·)
b (1n) : {f1ℓ : f1ℓ ← Fn,ℓ}ℓ∈N

}
n∈N
≈c

{
R

Fk,(·)(·)
b (1n) : k ← {0, 1}n

}
n∈N

Lemma 2. For all NUPPT A, we have that HA
1,0 ≈c HA

1,1.

Proof. Recall that in HA
1,b, A has oracle access to Ẽnc{f}(·). Let S be the set of r values

used by the oracle Ẽnc in responding to queries in either of these hybrids.

Claim 3. Since A is NUPPT, there is a polynomial p such that |S| < p(n) in the context
of HA

1,b for b ∈ {0, 1}.

Claim 4. There exists some negligible ε such that in the context of HA
1,b for b ∈ {0, 1}, we

have Pr[r∗ ∈ S] = |S|
2n < ε(n).4

Claim 5. For all NUPPT A and n ∈ N, we have that

Pr
[
IND-CPA

‹Π,A
0 (n) = 1 | r∗ ̸∈ S

]
≡ Pr

[
IND-CPA

‹Π,A
1 (n) = 1 | r∗ ̸∈ S

]
The above claim holds because in both the left and right-hand experiments, c∗ is com-

pletely uniform from the point of view of the adversary. Recall thatH1,b(n) = IND-CPA
‹Π,A
b (n).

For all n ∈ N, we have that

Pr [H1,b(n) = 1] = Pr [H1,b(n) = 1 ∧ r∗ ∈ S] + Pr [H1,b(n) = 1 ∧ r∗ ̸∈ S]

≤ Pr [r∗ ∈ S] + Pr [H1,b(n) = 1 | r∗ ̸∈ S] · Pr [r∗ ̸∈ S]

= Pr [r∗ ∈ S] + Pr [H1,1−b(n) = 1 | r∗ ̸∈ S] · Pr [r∗ ̸∈ S] (by Claim 5)

= Pr [r∗ ∈ S] + Pr [H1,1−b(n) = 1 ∧ r∗ ̸∈ S]

≤ Pr [r∗ ∈ S] + Pr [H1,1−b(n) = 1]

< Pr [H1,1−b(n) = 1] + ε(n) (by Claim 4)

Thus, for all NUPPT A, there exists a negligible ε such that for all n ∈ N, we have that∣∣∣∣Pr [IND-CPA‹Π,A
0 (n) = 1

]
− Pr

[
IND-CPA

‹Π,A
1 (n) = 1

]∣∣∣∣ < ε(n)

4Recall that r∗ is the randomness used by the IND-CPA-game itself to encrypt the challenge message mb.
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